Math 3210 § 1. Treibergs

First Midterm Exam
(1.) Prove that for all $n \in \mathbb{N}, \sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$.

Proof by induction. In the base case, $n=1$, the left side is $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1 \cdot 2}=\frac{1}{2}$. The right side is $\frac{n}{n+1}=\frac{1}{1+1}=\frac{1}{2}$ hence equality holds.

The induction setep is to prove the statement for $n+1$ assuming it's true for n. But

$$
\begin{aligned}
\sum_{i=1}^{n+1} \frac{1}{i(i+1)} & =\frac{1}{(n+1)(n+2)}+\sum_{i=1}^{n} \frac{1}{i(i+1)} \quad \text { Now use the induction hypothesis. } \\
& =\frac{1}{(n+1)(n+2)}+\frac{n}{n+1}=\frac{1+n(n+2)}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{(n+1)+1}
\end{aligned}
$$

(2.) Define a new binary operator \boxplus on \mathbb{N} as follows. For each $m \in \mathbb{N}$, the operation is defined recursively: let $1 \boxplus m:=m+1$ and for $n \geq 1$, let $(n+1) \boxplus m:=(n \boxplus m)+1$. How is ordinary addition " + " defined on \mathbb{N} ? Show that for all $m, n \in \mathbb{N}, n \boxplus m=m+n$, where " + " is ordinary addition.

Usual addition " + " is also defined recursively. Let $m \in \mathbb{N}$. Then $m+1:=m+1$, the successor to m, and for $n \geq 1, m+(n+1):=(m+n)+1$.

Let's prove the statement $\mathcal{P}(n) \Longleftrightarrow " n \boxplus m=m+n "$ using induction. The base case $\mathcal{P}(1)$, $1 \boxplus m=m+1$ is the base case for the definition of " \boxplus " and $m+1:=m+1$ is the base case for the definition of addition. Since they are equal, $\mathcal{P}(1)$ holds.

The induction step is to show $\mathcal{P}(n+1)$ assuming $\mathcal{P}(n)$ for $n \geq 1$. But $(n+1) \boxplus m=(n \boxplus m)+1$ by the inductive definition of " \boxplus." By the induction hypothesis, $\mathcal{P}(n)$, this equals $(m+n)+1$. By the inductive definition of addition (or by associativity of addition) this equals $m+(n+1)$. Thus we have shown $\mathcal{P}(n+1)$.
(3.) Let $f: X \rightarrow Y$ be a function. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

Statement A. If $X=f^{-1}(Y)$ then f is onto.
FALSE. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$ then $f^{-1}(\mathbb{R})=\mathbb{R}$ but f is not onto since $-4 \in \mathbb{R}$ is not in the image since $f(x) \geq 0$ for all $x \in \mathbb{R}$. In fact, $X=f^{-1}(Y)$ is true for every function.

Statement B. Suppose that for all $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ we have $x_{1} \neq x_{2}$. Then f is one-to-one.

FALSE. Same example as in A. The logically equivalent contrapositive statement is $x_{1}=x_{2}$ implies $f\left(x_{1}\right)=f\left(x_{2}\right)$ which is true for every function, not just one-to-one functions. Thus for $f(x)=x^{2}$ we have $x_{1}^{2} \neq x_{2}^{2}$ implies $x_{1} \neq x_{2}$ but f is not one-to-one since $f(-2)=4=f(2)$.

Statement C. If $A \subset X$ and $f(A)=Y$ then $A=X$.
FALSE. Define $f: \mathbb{R} \rightarrow[0, \infty)$ by $f(x)=x^{2}$. Let $X=\mathbb{R}$ and $A=Y=[0, \infty)$. Then $f(A)=Y$ but $A \neq X$.
(4.) Show that if a and b are elements of the commutative ring $(R,+, \cdot)$, then $x=(-a)+b$ solves the equation $a+x=b$. Show that the solution is unique.

$$
a+x=a+((-a)+b)
$$

$$
=(a+(-a))+b \quad \text { by associativitiy of addition } \mathrm{A} 2
$$

$$
=0+b \quad \text { by property of additive inverse } \mathrm{A} 4
$$

$$
=b \quad \text { by property of additive identity, } \mathrm{A} 3
$$

Thus x solves the equation $a+x=b$. Suppose y is another solution. Then

$$
\begin{aligned}
a+y & =b & & \\
(-a)+(a+y) & =(-a)+b, & & \text { By adding }-a \text { to both sides. } \\
((-a)+a)+y & =(-a)+b, & & \text { by associativity of addition A2; } \\
(a+(-a))+y & =(-a)+b, & & \text { by commutitivity of addition A1; } \\
0+y & =(-a)+b, & & \text { by property of additive inverse A4; } \\
y & =(-a)+b, & & \text { by property of additive identity, A3. }
\end{aligned}
$$

Thus another solution must equal the first, so the solution is unique.
(5.) Give as simple a description as possible of the set \mathcal{S} in terms of intervals of the real numbers

$$
\mathcal{S}=\{x \in \mathbb{R}:(\exists m \in \mathbb{N})(\forall \epsilon \in \mathbb{R} \text { such that } \epsilon>0) \quad m-\epsilon<x\}
$$

Show that set you describe equals \mathcal{S}.

$$
\mathcal{S}=\left\{x \in \mathbb{R}:(\exists m \in \mathbb{N})\left(x \in \bigcap_{\epsilon>0}(m-\epsilon, \infty)\right)\right\}=\bigcup_{m \in \mathbb{N}} \bigcap_{\epsilon>0}(m-\epsilon, \infty)=\bigcup_{m \in \mathbb{N}}[m, \infty)=[1, \infty)
$$

To show $\mathcal{S}=[0, \infty)$ we prove " \subset " and " \supset."
To show " \subset ", we choose any $y \in \mathcal{S}$ to show $y \in[1, \infty)$. But $y \in \mathcal{S}$ means for some $m_{0} \in \mathbb{N}$ we have for all $\epsilon \in \mathbb{R}$ such that $\epsilon>0$ there holds $m_{0}-\epsilon<y$. Hence, $y \geq m_{0}$ since otherwise, $y<m_{0}$ implies that for some $\epsilon_{0} \in \mathbb{R}$ such that $0<\epsilon_{0}<m_{0}-y$ we have $m_{0}-\epsilon_{0}>y$ contrary to $m-\epsilon<y$ for all $\epsilon>0$. Finally, since $y \geq m_{0} \geq 1$ we have $y \in[1, \infty)$.

To show " \supset," we choose $y \in[1, \infty)$ to show $y \in \mathcal{S}$. Then for $m_{0}=1$ we have $y \geq m_{0}$. Thus, for every $\epsilon>0$ we have $y>m_{0}-\epsilon$. In other words $(\forall \epsilon \in \mathbb{R}: \epsilon>0)\left(m_{0}-\epsilon<y\right)$. Since $m_{0} \in \mathbb{N}$ we also have

$$
(\exists m \in \mathbb{N})(\forall \epsilon \in \mathbb{R}: \epsilon>0)(m-\epsilon<y)
$$

Thus y satisfies the condition to belong to \mathcal{S}.

