Math 3210 § 1. First Midterm Exam Name: Golutions

Treibergs September 17, 2008
(1.) Prove that for alln € N, 37" | 2(z+1) = -

Proof by induction. In the base case, n = 1, the left side is )7, - z+1) = 15 = 3. The right
side is -5 = 47 = 3 hence equality holds.

The induction setep is to prove the statement for n + 1 assuming it’s true for n. But
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(2.) Define a new binary operator B on N as follows. For each m € N, the operation is defined
recursively: let LTEBm :=m+1 and forn>1, let (n+ 1)Bm := (nBm)+ 1. How is ordinary
addition “+” defined on N? Show that for all m,n € N, n B m = m + n, where “+7 is ordinary
addition.

Usual addition “+” is also defined recursively. Let m € N. Then m+1 := m+1, the successor
tom,and forn>1, m+ (n+1) = (m+n)+ 1.

Let’s prove the statement P(n) <= “nHm = m + n” using induction. The base case P(1),
1Hm =m+ 1 is the base case for the definition of “BH” and m + 1 := m + 1 is the base case for
the definition of addition. Since they are equal, P(1) holds.

The induction step is to show P(n+1) assuming P(n) for n > 1. But (n+1)Bm = (nBm)+1
by the inductive definition of “B.” By the induction hypothesis, P(n), this equals (m + n) + 1.
By the inductive definition of addition (or by associativity of addition) this equals m + (n + 1).
Thus we have shown P(n + 1).

(3.) Let f : X — Y be a function. Determine whether the following statements are true or false.
If true, give a proof. If false, give a counterexample.

Statement A. If X = f~1(Y) then f is onto.

FALSE. Let f : R — R be given by f(z) = 22 then f~!(R) = R but f is not onto since
—4 € R is not in the image since f(z) > 0 for all x € R. In fact, X = f=1(Y) is true for every
function.

Statement B. Suppose that for all x1,29 € X such that f(x1) # f(x2) we have x1 # x3. Then
f is one-to-one.

FALSE. Same example as in A. The logically equivalent contrapositive statement is x1 = xa
implies f(x1) = f(x2) which is true for every function, not just one-to-one functions. Thus for
f(x) = 22 we have x? # 23 implies z1 # x5 but f is not one-to-one since f(—2) =4 = f(2).

Statement C. If A C X and f(A) =Y then A= X.
FALSE. Define f : R — [0,00) by f(z) = 2%. Let X = Rand A = Y = [0,00). Then
F(A) =Y but A # X.

(4.) Show that if a and b are elements of the commutative ring (R, +,-), then x = (—a) + b solves
the equation a + x = b. Show that the solution is unique.

at+z=a+ ((—a)+0b)

=(a+(—a))+0b by associativitiy of addition A2;
=0+0 by property of additive inverse A4;
=b by property of additive identity, A3.



Thus z solves the equation a + x = b. Suppose y is another solution. Then

a+y=">
(—a)+(a+y)=(—a)+b By adding —a to both sides.
((ma)+a)+y=(—a)+b by associativity of addition A2;
(a+(—a))+y=(—a)+Db, by commutitivity of addition Al;
04+y=(—a)+bd by property of additive inverse A4;
=(—a)+b by property of additive identity, A3.

Thus another solution must equal the first, so the solution is unique.

(5.) Give as simple a description as possible of the set S in terms of intervals of the real numbers
S={z €R:(Im e N)(Ve € R such that ¢ >0) m —e<za}.

Show that set you describe equals S.

Sz{xéR:(HmEN)(mEﬂ(m—e,oo)} U ﬂ m—€,00) U[m,oo):[l,oo).

e>0 meN e>0 meN

To show § = [0, 00) we prove “C” and “D.”

To show “C”, we choose any y € S to show y € [1,00). But y € S means for some my € N
we have for all ¢ € R such that € > 0 there holds my — € < y. Hence, y > my since otherwise,
y < myg implies that for some ¢y € R such that 0 < ¢y < mg —y we have mg — ¢g > y contrary to
m — e < y for all e > 0. Finally, since y > mg > 1 we have y € [1, c0).

To show “D,” we choose y € [1,00) to show y € S. Then for mg = 1 we have y > mg. Thus,
for every € > 0 we have y > mg — €. In other words (Ve € R: € > 0)(mg — € < y). Since mg € N
we also have

(meN)(VecR:e>0)(m—e<y).

Thus y satisfies the condition to belong to S.



