Math 3210 § 1.	First Midterm Exam	Name:	Solutions
Treibergs		September 1	17, 2008

(1.) Prove that for all $n \in \mathbb{N}$, $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$.

Proof by induction. In the base case, n = 1, the left side is $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{1 \cdot 2} = \frac{1}{2}$. The right side is $\frac{n}{n+1} = \frac{1}{1+1} = \frac{1}{2}$ hence equality holds.

The induction setep is to prove the statement for n + 1 assuming it's true for n. But

$$\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = \frac{1}{(n+1)(n+2)} + \sum_{i=1}^{n} \frac{1}{i(i+1)}$$
 Now use the induction hypothesis.
$$= \frac{1}{(n+1)(n+2)} + \frac{n}{n+1} = \frac{1+n(n+2)}{(n+1)(n+2)} = \frac{(n+1)^2}{(n+1)(n+2)} = \frac{n+1}{(n+1)+1}.$$

(2.) Define a new binary operator \boxplus on \mathbb{N} as follows. For each $m \in \mathbb{N}$, the operation is defined recursively: let $1 \boxplus m := m + 1$ and for $n \ge 1$, let $(n + 1) \boxplus m := (n \boxplus m) + 1$. How is ordinary addition "+" defined on \mathbb{N} ? Show that for all $m, n \in \mathbb{N}$, $n \boxplus m = m + n$, where "+" is ordinary addition.

Usual addition "+" is also defined recursively. Let $m \in \mathbb{N}$. Then m+1 := m+1, the successor to m, and for $n \ge 1$, m + (n+1) := (m+n) + 1.

Let's prove the statement $\mathcal{P}(n) \iff "n \boxplus m = m + n"$ using induction. The base case $\mathcal{P}(1)$, $1 \boxplus m = m + 1$ is the base case for the definition of " \boxplus " and m + 1 := m + 1 is the base case for the definition of addition. Since they are equal, $\mathcal{P}(1)$ holds.

The induction step is to show $\mathcal{P}(n+1)$ assuming $\mathcal{P}(n)$ for $n \geq 1$. But $(n+1)\boxplus m = (n\boxplus m)+1$ by the inductive definition of " \boxplus ." By the induction hypothesis, $\mathcal{P}(n)$, this equals (m+n)+1. By the inductive definition of addition (or by associativity of addition) this equals m + (n+1). Thus we have shown $\mathcal{P}(n+1)$.

(3.) Let $f: X \to Y$ be a function. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

Statement A. If $X = f^{-1}(Y)$ then f is onto.

FALSE. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$ then $f^{-1}(\mathbb{R}) = \mathbb{R}$ but f is not onto since $-4 \in \mathbb{R}$ is not in the image since $f(x) \ge 0$ for all $x \in \mathbb{R}$. In fact, $X = f^{-1}(Y)$ is true for every function.

Statement B. Suppose that for all $x_1, x_2 \in X$ such that $f(x_1) \neq f(x_2)$ we have $x_1 \neq x_2$. Then f is one-to-one.

FALSE. Same example as in A. The logically equivalent contrapositive statement is $x_1 = x_2$ implies $f(x_1) = f(x_2)$ which is true for every function, not just one-to-one functions. Thus for $f(x) = x^2$ we have $x_1^2 \neq x_2^2$ implies $x_1 \neq x_2$ but f is not one-to-one since f(-2) = 4 = f(2).

Statement C. If $A \subset X$ and f(A) = Y then A = X.

FALSE. Define $f : \mathbb{R} \to [0,\infty)$ by $f(x) = x^2$. Let $X = \mathbb{R}$ and $A = Y = [0,\infty)$. Then f(A) = Y but $A \neq X$.

(4.) Show that if a and b are elements of the commutative ring $(R, +, \cdot)$, then x = (-a) + b solves the equation a + x = b. Show that the solution is unique.

$a + x = a + \left(\left(-a\right) + b\right)$	
= (a + (-a)) + b	by associativity of addition A2;
= 0 + b	by property of additive inverse A4;
= b	by property of additive identity, A3.

Thus x solves the equation a + x = b. Suppose y is another solution. Then

a + y = b	
(-a) + (a + y) = (-a) + b,	By adding $-a$ to both sides.
((-a) + a) + y = (-a) + b,	by associativity of addition A2;
(a + (-a)) + y = (-a) + b,	by commutitivity of addition A1;
0 + y = (-a) + b,	by property of additive inverse A4;
y = (-a) + b,	by property of additive identity, A3.

Thus another solution must equal the first, so the solution is unique.

(5.) Give as simple a description as possible of the set S in terms of intervals of the real numbers

$$\mathcal{S} = \left\{ x \in \mathbb{R} : (\exists m \in \mathbb{N}) (\forall \epsilon \in \mathbb{R} \text{ such that } \epsilon > 0) \quad m - \epsilon < x \right\}.$$

Show that set you describe equals S.

$$\mathcal{S} = \left\{ x \in \mathbb{R} : (\exists m \in \mathbb{N}) \left(x \in \bigcap_{\epsilon > 0} (m - \epsilon, \infty) \right) \right\} = \bigcup_{m \in \mathbb{N}} \bigcap_{\epsilon > 0} (m - \epsilon, \infty) = \bigcup_{m \in \mathbb{N}} [m, \infty) = [1, \infty).$$

To show $\mathcal{S} = [0, \infty)$ we prove " \subset " and " \supset ."

To show " \subset ", we choose any $y \in S$ to show $y \in [1, \infty)$. But $y \in S$ means for some $m_0 \in \mathbb{N}$ we have for all $\epsilon \in \mathbb{R}$ such that $\epsilon > 0$ there holds $m_0 - \epsilon < y$. Hence, $y \ge m_0$ since otherwise, $y < m_0$ implies that for some $\epsilon_0 \in \mathbb{R}$ such that $0 < \epsilon_0 < m_0 - y$ we have $m_0 - \epsilon_0 > y$ contrary to $m - \epsilon < y$ for all $\epsilon > 0$. Finally, since $y \ge m_0 \ge 1$ we have $y \in [1, \infty)$.

To show " \supset ," we choose $y \in [1, \infty)$ to show $y \in S$. Then for $m_0 = 1$ we have $y \ge m_0$. Thus, for every $\epsilon > 0$ we have $y > m_0 - \epsilon$. In other words $(\forall \epsilon \in \mathbb{R} : \epsilon > 0)(m_0 - \epsilon < y)$. Since $m_0 \in \mathbb{N}$ we also have

$$(\exists m \in \mathbb{N}) (\forall \epsilon \in \mathbb{R} : \epsilon > 0) (m - \epsilon < y).$$

Thus y satisfies the condition to belong to S.