
Math 3210 § 1.
Treibergs

First Midterm Exam Name: Solutions
September 17, 2008

(1.) Prove that for all n ∈ N,
∑n

i=1
1

i(i+1) = n
n+1 .

Proof by induction. In the base case, n = 1, the left side is
∑n

i=1
1

i(i+1) = 1
1·2 = 1

2 . The right
side is n

n+1 = 1
1+1 = 1

2 hence equality holds.
The induction setep is to prove the statement for n + 1 assuming it’s true for n. But
n+1∑
i=1

1
i(i + 1)

=
1

(n + 1)(n + 2)
+

n∑
i=1

1
i(i + 1)

Now use the induction hypothesis.

=
1

(n + 1)(n + 2)
+

n

n + 1
=

1 + n(n + 2)
(n + 1)(n + 2)

=
(n + 1)2

(n + 1)(n + 2)
=

n + 1
(n + 1) + 1

.

(2.) Define a new binary operator � on N as follows. For each m ∈ N, the operation is defined
recursively: let 1 � m := m + 1 and for n ≥ 1, let (n + 1) � m := (n � m) + 1. How is ordinary
addition “+” defined on N? Show that for all m,n ∈ N, n � m = m + n, where “+” is ordinary
addition.

Usual addition “+” is also defined recursively. Let m ∈ N. Then m+1 := m+1, the successor
to m, and for n ≥ 1, m + (n + 1) := (m + n) + 1.

Let’s prove the statement P(n) ⇐⇒ “n � m = m + n” using induction. The base case P(1),
1 � m = m + 1 is the base case for the definition of “�” and m + 1 := m + 1 is the base case for
the definition of addition. Since they are equal, P(1) holds.

The induction step is to show P(n+1) assuming P(n) for n ≥ 1. But (n+1)�m = (n�m)+1
by the inductive definition of “�.” By the induction hypothesis, P(n), this equals (m + n) + 1.
By the inductive definition of addition (or by associativity of addition) this equals m + (n + 1).
Thus we have shown P(n + 1).

(3.) Let f : X → Y be a function. Determine whether the following statements are true or false.
If true, give a proof. If false, give a counterexample.

Statement A. If X = f−1(Y ) then f is onto.
FALSE. Let f : R → R be given by f(x) = x2 then f−1(R) = R but f is not onto since

−4 ∈ R is not in the image since f(x) ≥ 0 for all x ∈ R. In fact, X = f−1(Y ) is true for every
function.

Statement B. Suppose that for all x1, x2 ∈ X such that f(x1) 6= f(x2) we have x1 6= x2. Then
f is one-to-one.

FALSE. Same example as in A. The logically equivalent contrapositive statement is x1 = x2

implies f(x1) = f(x2) which is true for every function, not just one-to-one functions. Thus for
f(x) = x2 we have x2

1 6= x2
2 implies x1 6= x2 but f is not one-to-one since f(−2) = 4 = f(2).

Statement C. If A ⊂ X and f(A) = Y then A = X.
FALSE. Define f : R → [0,∞) by f(x) = x2. Let X = R and A = Y = [0,∞). Then

f(A) = Y but A 6= X.

(4.) Show that if a and b are elements of the commutative ring (R,+, ·), then x = (−a)+ b solves
the equation a + x = b. Show that the solution is unique.

a + x = a + ((−a) + b)
= (a + (−a)) + b by associativitiy of addition A2;
= 0 + b by property of additive inverse A4;
= b by property of additive identity, A3.
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Thus x solves the equation a + x = b. Suppose y is another solution. Then

a + y = b

(−a) + (a + y) = (−a) + b, By adding −a to both sides.
((−a) + a) + y = (−a) + b, by associativity of addition A2;
(a + (−a)) + y = (−a) + b, by commutitivity of addition A1;

0 + y = (−a) + b, by property of additive inverse A4;
y = (−a) + b, by property of additive identity, A3.

Thus another solution must equal the first, so the solution is unique.

(5.) Give as simple a description as possible of the set S in terms of intervals of the real numbers

S = {x ∈ R : (∃m ∈ N)(∀ε ∈ R such that ε > 0) m− ε < x} .

Show that set you describe equals S.

S =

{
x ∈ R : (∃m ∈ N)

(
x ∈

⋂
ε>0

(m− ε,∞)

)}
=
⋃

m∈N

⋂
ε>0

(m− ε,∞) =
⋃

m∈N
[m,∞) = [1,∞).

To show S = [0,∞) we prove “⊂” and “⊃.”
To show “⊂”, we choose any y ∈ S to show y ∈ [1,∞). But y ∈ S means for some m0 ∈ N

we have for all ε ∈ R such that ε > 0 there holds m0 − ε < y. Hence, y ≥ m0 since otherwise,
y < m0 implies that for some ε0 ∈ R such that 0 < ε0 < m0 − y we have m0 − ε0 > y contrary to
m− ε < y for all ε > 0. Finally, since y ≥ m0 ≥ 1 we have y ∈ [1,∞).

To show “⊃,” we choose y ∈ [1,∞) to show y ∈ S. Then for m0 = 1 we have y ≥ m0. Thus,
for every ε > 0 we have y > m0 − ε. In other words (∀ε ∈ R : ε > 0)(m0 − ε < y). Since m0 ∈ N
we also have

(∃m ∈ N)(∀ε ∈ R : ε > 0)(m− ε < y).

Thus y satisfies the condition to belong to S.
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