First Midterm Exam given Sept. 20, 2000.

1. Using induction, prove that for all $n \in \mathbb{N}$,

$$
\begin{equation*}
1+3+\cdots+(2 n-1)=n^{2} \tag{n}
\end{equation*}
$$

2. Let $f: X \rightarrow Y$ be a function. Suppose that there is a function $g: Y \rightarrow X$ so that $g \circ f$ is the identity and that $f \circ g$ is the identity. Show that f is one-to-one and onto.
3. Assuming only the field axioms for \mathbf{R}, deduce that for every $x \in \mathbf{R}$ there holds $x \cdot 0=0$. For each step of your deductions, state which axiom is being used.
4. Find the complement in \mathbf{R} of the set of numbers $x \in \mathbf{R}$ for which there exists $\varepsilon>0$ such that $x \leq-\varepsilon$ or $x \geq \varepsilon$. Written in symbols $\forall, \exists, \backslash$, you are to find the set

$$
E=\mathbf{R} \backslash\{x \in \mathbf{R}:(\exists \varepsilon>0)(x \leq-\varepsilon O R \varepsilon \leq x)\}
$$

5. Using Peano's axioms and their immediate consequences proved in class, show that if $m, n \in \mathbb{N}$ then $m+n \neq n$. [Hint: use induction on n.]

Extra Problems.
E1. The terms of a sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ are given by $a_{0}=0, a_{1}=1$ and the recursive relation for $n \geq 1$ by $a_{n+1}=2 a_{n}-a_{n-1}+2$. Find a formula for a_{n} and prove it.
E2. For $x, y \in \mathbf{R}$, say that x and y satisfy the relation $P(x, y)$ whenever $x=y+i$ for some $i \in \mathbf{Z}$. Show that P is an equivalence relation. Describe \mathbf{R} / P.
E3. Let $\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z}\right.$ such that $\left.n \neq 0\right\} / \sim$ be the usual definition of the rational numbers, where we declare two fractions equivalent, $\frac{m}{n} \sim \frac{a}{b}$, whenever $m b=n a$. Show that the usual rule for multiplication of equivalence classes $\left[\frac{m}{n}\right] \cdot\left[\frac{a}{b}\right]:=\left[\frac{m a}{n b}\right]$ is well defined.

Solutions.

1. Prove that for all $n \in \mathbb{N}$,
$\left(A_{n}\right) \quad 1+3+\cdots+(2 n-1)=n^{2}$.
Induction proofs have two steps: the basis step proving A_{1} and the induction step $A_{n} \Longrightarrow A_{n+1}$. First we show the basis step A_{1}. When $n=1,1+3+\cdots+(2 n-1)=1$ and $n^{2}=1$ which are equal, so A_{1} is true.

Then we show the induction step. We assume the induction hypothesis: for any n we have A_{n} is true, namely, $1+3+\cdots+(2 n-1)=n^{2}$. We wish to show this implies A_{n+1}, namely, $1+3+\cdots+(2 n-1)+(2(n+$ 1) -1$)=(n+1)^{2}$. However, using the induction hypothesis on the first n terms, and then rearranging,

$$
\{1+3+\cdots+(2 n-1)\}+[2(n+1)-1]=\left\{n^{2}\right\}+[2 n+1]=(n+1)^{2}
$$

so the induction step is complete.
As the basis and the induction steps hold, by induction, A_{n} holds for all n.
2. Let $f: X \rightarrow Y$ be a function. Suppose that there is a function $g: Y \rightarrow X$ so that $g \circ f$ is the identity and that $f \circ g$ is the identity. Show that f is one-to-one and onto.

First we show that f is onto, namely, for every $y \in Y$ there is an $x \in X$ so that $y=f(x)$. Choose $y \in Y$. The desired x is $x=g(y)$. To see that this x works, $f(x)=f(g(y))=(f \circ g)(y)=\operatorname{Id}(y)=y$ since $f \circ g=\operatorname{Id}$. Hence we have shown f is onto.

Second we show that f is one-to-one, namely, if whenever for some $x_{1}, x_{2} \in X$ we have $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$. Suppose there are $x_{1}, x_{2} \in X$ so that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then apply g to both sides: $g\left(f\left(x_{1}\right)\right)=$ $g\left(f\left(x_{2}\right)\right)$ or $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. But since $g \circ f=\operatorname{Id}, \operatorname{Id}\left(x_{1}\right)=\operatorname{Id}\left(x_{2}\right)$ or $x_{1}=x_{2}$. Thus we have shown that f is one-to-one.
3. Assuming only the field axioms for \mathbf{R}, deduce that for every $x \in \mathbf{R}$ there holds $x \cdot 0=0$. For each step of your deductions, state which axiom is being used.

Choose $x \in \mathbf{R}$.

$$
\begin{aligned}
x \cdot 0 & =x \cdot 0+0 & & \text { Property of additive identity. } \\
& =x \cdot 0+(x+(-x)) & & \text { Additive inverse of } x . \\
& =(x \cdot 0+x)+(-x) & & \text { Associativity of addition. } \\
& =(0 \cdot x+x)+(-x) & & \text { Commutativity of multiplication. } \\
& =(0 \cdot x+1 \cdot x)+(-x) & & \text { Multiplicative identity. } \\
& =(0+1) \cdot x+(-x) & & \text { Distributive. (From the right.) } \\
& =(1+0) \cdot x+(-x) & & \text { Commutativity of addition. } \\
& =1 \cdot x+(-x) & & \text { Property of additive identity. } \\
& =x+(-x) & & \text { Multiplicative identity. } \\
& =0 & & \text { Additive inverse of } x .
\end{aligned}
$$

Thus $x \cdot 0=0$ and we are done.
4. Find the set $E=\mathbf{R} \backslash\{x \in \mathbf{R}:(\exists \varepsilon>0)(x \leq-\varepsilon O R \varepsilon \leq x)\}$.

$$
\begin{aligned}
E & =\mathbf{R} \backslash\{x \in \mathbf{R}:(\exists \varepsilon>0)(x \leq-\varepsilon \text { OR } \varepsilon \leq x)\} & & \\
& =\{x \in \mathbf{R}: \sim(\exists \varepsilon>0)(x \leq-\varepsilon \text { OR } \varepsilon \leq x)\} & & \text { Meaning of complement. } \\
& =\{x \in \mathbf{R}:(\forall \varepsilon>0) \sim(x \leq-\varepsilon \text { OR } \varepsilon \leq x)\} & & \text { Negation of } \exists . \\
& =\{x \in \mathbf{R}:(\forall \varepsilon>0)(\sim(x \leq-\varepsilon) \text { AND } \sim(\varepsilon \leq x))\} & & \text { De Morgan's Law. } \\
& =\{x \in \mathbf{R}:(\forall \varepsilon>0)(-\varepsilon<x \text { AND } x<\varepsilon)\} & & \\
& =\{x \in \mathbf{R}: 0 \leq x \text { AND } x \leq 0\} & & \\
& =\{x \in \mathbf{R}: x=0\} & &
\end{aligned}
$$

5. Using Peano's axioms and their immediate consequences proved in class, show that if $m, n \in \mathbb{N}$ then $n+n \neq n$.

Choose $m \in \mathbb{N}$. Let $\mathcal{Q}(n)$ be the statement " $m+n \neq n$."
The basis statement $\mathcal{Q}(1)$ is $m+1 \neq 1$. Arguing by contradiction, if this were not the case then $m+1=1$ which says that 1 is the successor of m. However, by axiom N3., 1 is not the successor of any element of \mathbb{N}, which implies the contradicrtion: 1 is not the successor of m.

The induction step is to show $\mathcal{Q}(n+1)$ assuming $\mathcal{Q}(n)$. In other words, we have to show $m+(n+1) \neq n+1$. Again, argue by contradiction and assume that $\ell=m+(n+1)=n+1$. The last equality says that ℓ is the successor to n. Using the inductive definition of addition $(m+(n+1):=(m+n)+1$, or its consequence, the associative property of addition in \mathbb{N},) we see that $\ell=(m+n)+1$. In other words, ℓ is the successor of $m+n$. By the inductive hypothesis $m+n \neq n$ so that ℓ is the successor of two different numbers, n and $m+n$. However, by Peano's axiom N4., if two elements of \mathbb{N} have the same successor, then they are equal. In particular, this implies the contradiction that n and $m+n$ are equal.
E1. The terms of a sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ are given by $a_{0}=0, a_{1}=1$ and the recursive relation for $n \geq 1$ by $a_{n+1}=2 a_{n}-a_{n-1}+2$. Find a formula for a_{n} and prove it.

Let's try a few terms to see the pattern. $a_{2}=2 a_{1}-a_{0}+2=2 \cdot 1-0+2=4 . a_{3}=2 a_{2}-a_{1}+2=2 \cdot 4-1+2=9$. $a_{4}=2 a_{3}-a_{2}+2=2 \cdot 9-4+2=16$. It seems that $a_{n}=n^{2}$. Let's prove it by strong induction.

There are two base cases: for $n=0$ we have $a_{0}=0=0^{2}$ and for $n=1$ we have $a_{1}=1=1^{2}$.
For strong induction for $n \geq 1$, we shall show the statement for $n+1$ assming it's true for n and $n-1$. Using the recursive definition, $a_{n+1}=2 a_{n}-a_{n-1}+2$. Using the two induction hypotheses, $a_{n}=n^{2}$ and $a_{n-1}=(n-1)^{2}$ we see that $a_{n+1}=2 n^{2}-(n-1)^{2}+2=2 n^{2}-\left[n^{2}-2 n+1\right]+2=n^{2}+2 n+1=(n+1)^{2}$. The induction is proven.

E2. For $x, y \in \mathbf{R}$, say that x and y satisfy the relation $P(x, y)$ whenever $x=y+i$ for some $i \in \mathbb{Z}$. Show that P is an equivalence relation. Describe \mathbf{R} / P.

To be an equivalence relation, P has to be reflexive, symmetric and transitive. To see reflexive, choose $x \in \mathbf{R}$ to see if $P(x, x)$ holds. But by taking $0 \in \mathbb{Z}$, we see that $x=x+0$ so $P(x, x)$ holds. To see transitive, for any $x, y \in \mathbf{R}$ to see if $P(x, y) \Longrightarrow P(y, x)$. If $P(x, y)$ then $x=y+j$ for some $j \in \mathbb{Z}$. But by subtracting j we see that $y=x+(-j)$, where $-j \in \mathbb{Z}$. Hence $P(y, x)$ holds as well. Finally, for any $z, y, x \in \mathbf{R}$, transitivity means if $P(x, y)$ and $P(y, z)$ hold then $P(x, z)$ holds. But $P(x, y)$ means $x=y+i$ and $P(y, x)$ means $y=z+j$ for some $i, j \in \mathbb{Z}$. Substituting, this gives $x=(z+j)+i$ or $x=z+(i+j)$ for this $i+j \in \mathbb{Z}$. But this is the condition that $P(x, z)$ holds. \mathbf{R} / P is nothing more than the circle. None of the points of the interval $[0,1)$ are identified to each other, because they don't differ by an integer. However, every real is identified to a point in $[0,1)$. Since 0 and 1 are identified $(P(0,1)$ holds since $0=1+(-1))$ as if we glued the ends of the interval together. But this is a circle of unit length.
E3. Let $\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z}\right.$ such that $\left.n \neq 0\right\} / \sim$ be the usual definition of the rational numbers, where we declare two fractions equivalent, $\frac{m}{n} \sim \frac{a}{b}$, whenever $m b=n a$. Show that the usual rule for multiplication of equivalence classes $\left[\frac{m}{n}\right] \cdot\left[\frac{a}{b}\right]:=\left[\frac{m a}{n b}\right]$ is well defined.

To be well defined on equivalence classes means that if we take different representatives of the equivalence classes, we still get the same answer. That is if $\left[\frac{m}{n}\right]=\left[\frac{m^{\prime}}{n^{\prime}}\right]$ and $\left[\frac{a}{b}\right]=\left[\frac{a^{\prime}}{b^{\prime}}\right]$ then $\left[\frac{m a}{n b}\right]=\left[\frac{m^{\prime} a^{\prime}}{n^{\prime} b^{\prime}}\right]$. The first equation means $m n^{\prime}=m^{\prime} n$ and the second $a b^{\prime}=a^{\prime} b$. Multiplying these equations we see that $m a n^{\prime} b^{\prime}=$ $n b m^{\prime} a^{\prime}$. However this says $\frac{m a}{n b} \sim \frac{m^{\prime} a^{\prime}}{n^{\prime} b^{\prime}}$ as to be shown.

