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Sample Final Exams Name: SomeSolutions
December 12, 2009

More Problems.

1. Suppose f : [−5,∞) → R is defined by f(x) =
√

5 + x. Using just the definition of differ-
entiability, show that f is differentiable at a = 5 and find f ′(4).

We show that the limit of the difference quotient exists.

f ′(4) = lim
x→4

f(x)− f(4)
x− 4

= lim
x→4

√
5 + x−

√
5 + 4

x− 4

= lim
x→4

(
√

5 + x− 3) (
√

5 + x+ 3)
(x− 4) (

√
5 + x+ 3)

= lim
x→4

5 + x− 9
(x− 4) (

√
5 + x+ 3)

= lim
x→4

1√
5 + x+ 3

=
1
6
.

2. Suppose f : (a, b)→ R is uniformly continuous. Show that the limit exists: lim
x→b−

f(x).

Proof. i.e., a uniformly continuous function on (a, b) has a continuous extension to (a, b].
This was a theorem in the text, but the problem asks us to prove it. Uniformly continuous
means for every ε > 0 there is a δ > 0 so that |f(x)−f(y)| < ε whenever x, y ∈ (a, b) satisfy
|x− y| < δ. Let {xn} be any sequence in (a, b) such that xn → 0 as n→∞. We first show
that {f(xn)} is a Cauchy Sequence. To see it, choose ε > 0. By uniform continuity, there
is a δ > 0 so that |f(xm) − f(xk)| < ε whenever |xm − xk| < δ. But {xn} is convergent,
hence Cauchy. Thus there is an N ∈ R so that |xm−xk| < δ whenever any m, k ∈ N satisfy
m > N and k > N . Hence |f(xm)− f(xk)| < ε whenever any m, k ∈ N satisfy m > N and
k > N . But this says {f(xn)} is a Cauchy Sequence.

Since {f(xn)} is Cauchy, it is convergent, so let L ∈ R be the limit: f(xn)→ L as n→∞.
We have found a subsequence converging to L. The rest of the argument is to show that
continuous limit f(x) → L as x → b−. To this end, we show that the definition of limit
is satisfied: that for all ε > 0 there is a δ > 0 so that |f(x) − L| < ε for all x ∈ (a, b)
such that b − δ < x < b. Choose ε > 0. By uniform convergence, there is a δ > 0 so that
|f(x) − f(y)| < ε

2 whenever x, y ∈ (a, b) satisfy |x − y| < δ. This is the δ needed for the
limit. Now choose any x ∈ (a, b) such that b−δ < x < b. Since f(xn)→ L as n→∞, there
is an N ∈ R so that |f(xn) − L| < ε

2 whenever n > N . Finally, since xk → b as k → ∞,
there is a k ∈ N so large that k > N and b− δ < xk < b. By the usual sneaky adding and
subtracting trick and the triangle inequality,

|f(x)− L| = |f(x)− f(xk) + f(xk)− L| ≤ |f(x)− f(xk)|+ |f(xk)− L| < ε

2
+
ε

2
= ε,

by uniform continuity since both x, xk ∈ (b − δ, b) so |x − xk| < δ and by the Cauchy of
f(xn). Thus f(x)→ L as x→ b−.

3. Give an example of a function f : R → R that is differentiable at a = 0 but not for any
other a 6= 0. Prove that your function has this property.

Proof. We modify the Dirichlet function that is not continuous at any point. Let

f(x) =

{
x2, if x ∈ Q is rational,
0, if ∈ R\Q is irrational.
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If a 6= 0 then f is not continuous at a, hence not differentiable at a. Indeed by the density
of rationals and irrationals, there are sequences yn ∈ Q and zn ∈ R\Q such that yn → a
and zn → a as n → ∞. Thus f(yn) = y2

n → a2 as n → ∞ but f(zn) = 0 → 0 as n → ∞.
Since two subsequences converging to a result in inconsistent limits (a2 6= 0), the function
f is not continuous at a.

The differentiability at a = 0 follows because f is squeezed between a “rock and a hard
place.” For all x ∈ R, |f(x)| ≤ x2. It follows that the difference quotient converges to zero.
Indeed, choose ε > 0 and let δ = ε. Then for any x ∈ R, if 0 < |x− 0| < δ then∣∣∣∣f(x)− f(0)

x− 0
− 0
∣∣∣∣ =
|f(x)|
|x|

≤ |x|
2

|x|
= |x| < δ = ε.

Thus f is differentiable at a = 0 since the limit exists: f ′(0) = lim
x→0

f(x)− f(0)
x− 0

= 0.

4. Let f : [0,∞)→ R be a continuous function which is differentiable on (0,∞). Suppose that
f(0) = 0 and |f ′(x)| < M for all x ∈ (0,∞). Show that for all x ≥ 0,

|f(x)| ≤M |x|.

Proof. If x = 0 then |f(0)| = |0| ≤M |0|. Thus suppose x > 0. Because f is continuous on
[0, x] and differentiable on (0, x), my the mean value theorem, there is c ∈ (0, x) so that

|f(x)| = |f(x)− f(0)| = |f ′(c)(x− 0)| = |f ′(c)| |x| ≤M |x|

because |f ′(c)| ≤M holds for any c > 0.

5. Show that there is a function f : R → R which is differentiable on R but f ′(x) is not
continuous on R. Prove that your function has this property.

Proof. Let

f(x) =

{
x2 sin

(
1
x

)
, if x 6= 0,

0, if x = 0.

For all x ∈ R, this function is squeezed |f(x)| ≤ x2. As in problem (3), f is differentiable at
zero and f ′(0) = 0. For x 6= 0, the function is the product and composition of differentiable
functions, whose derivative is gotten by the product and chain rules

f ′(x) = 2x sin
(

1
x

)
− cos

(
1
x

)
.

For the sequence xn = 1
2πn which tends to zero, we have f ′(xn) = −1 so that f ′(xn)→ −1

as n→∞. As this is not f ′(0) = 0, f ′ is not continuous at 0.

6. Suppose f : (a, b) → R is differentiable on (a, b). Suppose x, y ∈ (a, b) and that m is any
number between f ′(x) and f ′(y). Then there is a z between x and y such that f ′(z) = m.
In other words, the mean value property holds for the derivative, even though the derivative
may not be a continuous function.

Proof. Choose x, y ∈ (a, b). For convenience, let us assume that x < y and f ′(x) < m <
f ′(y). Other cases are similar. Then the function g(x) = f(x)−mx is continuous on [x, y]
and differentiable on (a, b). Also g′(x) = f ′(x)−m < 0 and g′(y) = f ′(y)−m > 0.

As in the homework problem, it follows that for z ∈ (x, y) close enough to x, g(z) < g(x) and
for z close enough to y, g(z) < g(y). To see this, let’s do the y case. Since g is differentiable
at y,

g′(y) = lim
z→y−

g(z)− g(y)
z − y
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so for any ε > 0, there is a δ > 0 so that for any z ∈ (x, y) so that y − δ < z < y we have∣∣∣∣g(z)− g(y)
z − y

− g′(y)
∣∣∣∣ < ε.

Applying this to ε = g′(y) > 0, if z ∈ [x, y] satisfies y − δ < z < y then

g(z) = g(y) +
(
g(z)− g(y)
z − y

− g′(y)
)

(z − y) + g′(y)(z − y)

≤ g(y) +
∣∣∣∣g(z)− g(y)

z − y
− g′(y)

∣∣∣∣ |z − y|+ g′(y)(z − y)

< g(y) + g′(y)|z − y|+ g′(y)(z − y) = g(y).

Thus it follows that there are points in the interval zi ∈ [x, y] such that g(z1) < g(x) and
g(z2) < g(y). But since g is continuous on [x, y], by the minimum theorem, there is c ∈ [x, y]
so that

g(c) = inf
z∈[x,y]

g(z).

But c cannot be the endpoint because g(c) ≤ min{g(z1), g(z2)} < min{g(x), g(y)}, thus
c ∈ (x, y), where g is differentiable. It follows from the theorem about the vanishing of the
derivative at a minimum point and the definition of g,

f ′(c)−m = g′(c) = 0

so that at the intermediate point f ′(c) = m, as desired.

7. Which is bigger eπ or πe?

Proof. Consider the function f(x) = e−xxe. It is continuous on [0,∞) and differentiable
on (0,∞) since we use logs and exponentials to define f(x) = exp(g(x)) where g(x) =
−x+ e lnx. Since g′(x) = −1 + e

x , it follows that g′(x) > 0 for x ∈ (0, e) and g′(x) < 0 for
x ∈ (e,∞). Hence g(e) = 0 > g(π) by the corollary to the Mean Value Theorem relating
decreasing to derivatives. Because exp is a strictly increasing function, it is increasing and
decreasing on the same intervals as g. It follows from e < π that

1 = f(e) = exp(g(e)) = exp(0) > exp(g(π)) = f(π) =
πe

eπ

so πe < eπ.

8. Suppose that f : (a,∞) → R is differentiable and that f ′(x) → ∞ as x → ∞. Then show
that f is not uniformly continuous on (0,∞).

Proof. By negating the definition, we are to show f is not uniformly continuous on (a,∞)
which means there exists an ε > 0 such that for every δ > 0 there are x, y ∈ (a,∞) such
that |x− y| < δ and |f(x)− f(y)| ≥ ε. We show this is true for ε = 1. Choose δ > 0. Since
f ′(x) → ∞, there is R ∈ R so that f ′(c) > 2

δ whenever c ∈ (a,∞) satisfies c > R. Now
pick an x ∈ (a,∞) such that x > R. Let y = x + δ

2 . We have y ∈ (a,∞) and it satisfies
|y − x| = δ

2 < δ. Because f is continuous on [x, y] and differentiable on (x, y), by the Mean
Value Theorem, there is a c ∈ (x, y) such that

|f(y)− f(x)| = |f ′(c)(y − x)| = f ′(c)(y − x) >
2
δ
· δ

2
= 1 ≥ ε

because c > x > R.
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9. Let f : [a, b]→ R be an integrable function. Then f2 is integrable on [a, b] and(∫ b

a

f(x) dx

)2

≤ (b− a)
∫ b

a

f2(x) dx. (1)

Proof. First, for all x ∈ [a, b], infx∈[a,b] f ≤ f(x) ≤ supx∈[a,b] f so 0 ≤ f2(x) ≤ M where
M = max{| infx∈[a,b] f |2, | supx∈[a,b] f |2}. Thus f is bounded.

Next we show f2 is integrable using the theorem that says g is integrable om [a, b] if and
only if for every ε > 0 there is a partition P = {a = x0 < x1 < · · · < xn = b} of [a, b] so
that U(g,P)− L(g,P) < ε. Here the upper and lower sums are

U(g,P) =
n∑
k=1

Mk(g) (xk − xk−1), L(g,P) =
n∑
k=1

mk(g) (xk − xk−1)

where
Mk(g) = sup

x∈[xk−1,xk]

g(x), mk(g) = inf
x∈[xk−1,xk]

g(x).

For any partition, consider three cases for a subinterval: Mk ≤ 0, mk ≤ 0 ≤ Mk and
0 ≤ mk. In the first case for x ∈ [xk−1, xk],

mk(f) ≤ f(x) ≤Mk(f) ≤ 0

so that
0 ≤Mk(f)2 ≤ f2(x) ≤ mk(f)2

which implies

Mk(f2)−mk(f2) ≤ mk(f)2−Mk(f)2 = |mk(f)+Mk(f)| |mk(f)−Mk(f)| ≤ 2M(Mk(f)−mk(f)).

In the second case for x ∈ [xk−1, xk], mk(f) ≤ 0 ≤Mk(f). Thus,

mk(f) ≤ f(x) ≤Mk(f)

so that

0 ≤ f2(x) ≤ max{mk(f)2,Mk(f)2} ≤ (Mk(f)−mk(f))2 ≤ (|Mk(f)|+|mk(f)|)(Mk(f)−mk(f))

which implies
Mk(f2)−mk(f2) ≤Mk(f2) ≤ 2M(Mk(f)−mk(f)).

In the third case, for x ∈ [xk−1, xk],

0 ≤ mk(f) ≤ f(x) ≤Mk(f)

so that
0 ≤ mk(f)2 ≤ f2(x) ≤Mk(f)2

which implies

Mk(f2)−mk(f2) ≤Mk(f)2−mk(f)2 = |Mk(f)+mk(f)| |Mk(f)−mk(f)| ≤ 2M(Mk(f)−mk(f)).

Hence, for any subinterval [xk−1, xk] in every case we have

Mk(f2)−mk(f2) ≤ 2M(Mk(f)−mk(f)).
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To prove f2 is integrable, choose ε > 0. Since f is integrable, there is a partition P such
that

U(f,P)− L(f,P) <
ε

2M + 1
.

Then the same partition applied to f2 yields

U(f2,P)− L(f2,P) =
n∑
k=1

(Mk(f2)−mk(f2)) (xk − xk−1)

≤
n∑
k=1

2M(Mk(f)−mk(f)) (xk − xk−1)

= 2M(U(f,P)− L(f,P))

<
2Mε

2M + 1
< ε

Thus f2 is integrable.

Inequality (1) is known as the Schwartz Inequality. Its proof is a little trick. The inequality
is trivial if a = b, so we assume a < b. For each t ∈ R the function (f(x) + t)2 is integrable
since it is the square of an integrable function f(x) + t. It is nonnegative, thus for all t ∈ R,

0 ≤
∫ b

a

(f(x) + t)2 dx =
∫ b

a

f(x)2 dx+ 2t
∫ b

a

f(x) dx+ t2
∫ b

a

dx = α+ 2βt+ γt2.

The quadratic function is minimized when t = −βγ . Substituting this t,

0 ≤ α− 2β2

γ
+
γβ2

γ2
= α− β2

γ
=
∫ b

a

f(x)2 dx− 1
b− a

(∫ b

a

f(x) dx

)2

which is the Schwartz Inequality (1).

10. Let fn, f : [a, b]→ R be functions defined on a closed, bounded interval. Assume that fn are
bounded and integrable, and that fn → f uniformly as n→∞. Then f is integrable and we
can interchange limit and integral

lim
n→∞

(∫ b

a

fn(x) dx

)
=
∫ b

a

f(x) dx. (2)

Proof. First, we show f is bounded. Since fn → f converges uniformly, for every ε > 0,
there is anN(ε) ∈ R so that if n ∈ N satisfies n > N(ε) and x ∈ [a, b], then |fn(x)−f(x)| < ε.
Taking ε = 1, and fix an n ∈ N large enough so n > N(1), then any x ∈ [a, b] satisfies

|f(x)| = |fn(x) + f(x)− fn(x)| ≤ |fn(x)|+ |f(x)− fn(x)| ≤ sup
x∈[a,b]

|fn(x)|+ 1

which is finite because fn is bounded. Thus f is bounded.

Next we show f is integrable. For this purpose, we use the theorem that says f is integrable
om [a, b] if and only if for every ε > 0 there is a partition P = {a = x0 < x1 < · · · < xn = b}
of [a, b] so that U(f,P)− L(f,P) < ε. Here the upper and lower sums are

U(f,P) =
n∑
k=1

Mk(f) (xk − xk−1), L(f,P) =
n∑
k=1

mk(f) (xk − xk−1)
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where
Mk(f) = sup

x∈[xk−1,xk]

f(x), mk(f) = inf
x∈[xk−1,xk]

f(x).

Now choose ε > 0. We approximate f by an f`, then choose a partition that is good for f`
and then show it is good for f . Since the convergence is uniform, there is N ∈ R so that
whenever ` ∈ N satisfies ` > N and every x ∈ [a, b] we have

|f`(x)− f(x)| < ε

6(b− a) + 6
. (3)

We pick one such ` to show integrable. Thus, for every x ∈ [a, b],

f`(x)− ε

6(b− a) + 6
< f(x) < f`(x) +

ε

6(b− a) + 6
.

Now f` is integrable, so by the theorem, there is a partition of P = {a = x0 < x1 < · · · <
xn = b} of [a, b] so that U(f`,P)− L(f`,P) < ε

3 . Hence taking inf and sup over [xk−1, xk],

mk(f`)−
ε

6(b− a) + 6
≤ inf
x∈[xk−1,xk]

f` −
ε

6(b− a) + 6
≤ inf
x∈[xk−1,xk]

f = mk(f),

Mk(f) = sup
x∈[xk−1,xk]

f ≤ sup
x∈[xk−1,xk]

f` +
ε

6(b− a) + 6
≤Mk(f`) +

ε

6(b− a) + 6
.

It follows that
Mk(f)−mk(f) ≤Mk(f`)−mk(f`) +

ε

3(b− a) + 3
.

Summing over the subintervals,

U(f,P)− L(f,P) =
n∑
k=1

(
Mk(f)−mk(f)

)
(xk − xk−1)

≤
n∑
k=1

(
Mk(f`)−mk(f`) +

ε

3(b− a) + 3

)
(xk − xk−1)

= U(f`,P)− L(f`,P) +
ε

3(b− a) + 3

n∑
k=1

(xk − xk−1)

<
ε

3
+

ε(b− a)
3(b− a) + 3

< ε.

Hence f is integrable.

To show that the limit of the integrals is the integral of the limit, choose ε > 0 and let
N ∈ R as above. Applying (3), for every n > N we get∣∣∣∣∣
∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)− fn(x)| dx ≤
∫ b

a

ε dx

6(b− 1) + 6
=

ε(b− a)
6(b− 1) + 6

< ε.

Thus we have shown (2).

11. Define log x =
∫ x

1

dt

t
for x > 0 as usual. If x = ey is the inverse function of y = log x,

show that ey is differentiable and
d

dy
ey = ey.

The differentiability of F (x) = log x follows from the Fundamental Theorem of Calculus,
which says that if f is integrable on [a, b] for any 0 < a < 1 < b <∞ then F (z) =

∫ z
1
f(t) dt
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is uniformly continuous on [a, b] and if f is continuous at z ∈ (a, b), then F is differentiable
at z and F ′(z) = f(z). In our case f(t) = 1

t so it is continuous, hence integrable on [a, b]
and since f is continuous at z, F ′(z) = 1

z .

Since F ′(z) > 0, it is strictly increasing, and since F (z) is continuous, the inverse function
theorem for continuous functions says that F−1 = exp : [log a, log b]→ R is continuous and
strictly increasing. We have defined F on (0,∞) (by taking a small and b large enough).
So choose w ∈ F ((0,∞)) and let F (z) = w be the corresponding point inverse to w. By
the theorem on derivatives of inverse functions, which says, if F is monotone on (0,∞) and
differentiable at z ∈ (0,∞) and F ′(z) = 1

z 6= 0, then the inverse function is differentiable at
w = F (z) and

d

dy
ey
∣∣∣∣
y=w

=
d

dy
F−1(y)

∣∣∣∣
y=w

=
1

F ′(z)
=

1
1/z

= z = F−1(w) = ew.

12. Does the improper integral
∫ ∞
−∞

d t

(t2 + t4)
1
3

converge? Why?

There are four limits: at −∞, 0−,0+ and ∞. Split the integral into four parts

I1 + I2 + I3 + I4 =
∫ −1

−∞
+
∫ 0

−1

+
∫ 1

0

+
∫ ∞

1

Use the comparison theorem for improper integrals. If f , g are integrable on all subintervals

and if |f(t)| ≤ g(t) for all t and if the improper integral
∫
I

g(t) dt converges then the

improper integral
∫
I

f(t) dt converges. For the interval I2 and I3, we have for 0 < |t| ≤ 1,

|f(t)| = 1

(t2 + t4)
1
3
≤ 1
t

2
3

= g(t)

and the improper integral conveges∫ 1

0

g(t) dt =
∫ 1

0

d t

t
2
3

= lim
ε→0+

∫ 1

ε

d t

t
2
3

= lim
ε→0+

[
3t

1
3

]1
ε

= lim
ε→0+

[
3− 3ε

1
3

]
= 3.

Thus the improper integral I3 exists. Because g(t) is an even function∫ 0

−1

g(t) dt =
∫ 0

−1

d t

t
2
3

= lim
ε→0−

∫ ε

−1

d t

t
2
3

= lim
ε→0+

∫ 1

ε

d t

t
2
3

= 3

from before. Thus the improper integral I2 exists also.

For the interval I1 and I4, we have for 1 ≤ |t|,

|f(t)| = 1

(t2 + t4)
1
3
≤ 1
t

4
3

= g(t)

and the improper integral conveges∫ ∞
1

g(t) dt =
∫ ∞

1

d t

t
4
3

= lim
R→∞

∫ R

1

d t

t
4
3

= lim
R→∞

[
−3t−

1
3

]R
1

= lim
R→∞

[
3− 3R−

1
3

]
= 3.

Thus the improper integral I4 exists. Because g(t) is an even function∫ −1

−∞
g(t) dt =

∫ −1

−∞

d t

t
4
3

= lim
R→∞

∫ −1

−R

d t

t
4
3

= lim
R→∞

∫ R

1

d t

t
4
3

= 3

from before. Thus the improper integral I1 exists also.
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13. Show that if the limit lim
n→∞

|bk|
|ak|

= L exists and if
∞∑
k=1

ak converges absolutely then
∞∑
k=1

bk

converges absolutely.

The existence of the limit of nonnegative numbers so L ≥ 0 shows that the series can be
compared. There is an N ∈ R so that ak 6= 0 and

|bk|
|ak|

< L+ 1

whenever k > N . Hence, for all k > N ,

|bk| ≤ (L+ 1)|ak|.

Hence, by the regular comparison test,
∞∑
k=1

|bk| is convergent because
∞∑
k=1

(L + 1)|ak| is

convergent by assumption.

14. Determine whether
∞∑
k=1

(−1)k
(k!)2

(2k)!
is absolutely convergent, conditionally convergent or di-

vergent.

To check absolute convergence, use the ratio test.

ρ = lim
k→∞

|ak+1|
|ak|

= lim
k→∞

((k+1)!)2

(2k+2)!

(k!)2

(2k)!

= lim
k→∞

(k + 1)! · (k + 1)!
(2k + 2)!

· (2k)!
k! · k!

= lim
k→∞

(k + 1)2

(2k + 2)(2k + 1)
=

1
4
.

Since ρ < 1, the series is absolutely convergent.

15. Let a+ = a if a ≥ 0 and a+ = 0 if a < 0. Similarly, let a− = min{0, a}. Show that if

A =
∞∑
k=1

ak is conditionally convergent, then the series

P =
∞∑
k=1

a+
k , M =

∞∑
k=1

a−k

are both divergent.

Argue by contradiction. We assume that A is conditionally convergent and both P and M
are not divergent. Thus we may assume that one of the sums, say P , is convergent. Using
the fact that ak = a+

k + a−k , we have the series of differences from two convergent series is
convergent and converges to the difference, so

M =
∞∑
k=1

a−k =
∞∑
k=1

(ak − a+
k ) =

∞∑
k=1

ak −
∞∑
k=1

a+
k = A− P

converges also. Similarly if M converges then so does P . Thus both P and M converge.
It follows that A is absolutely convergent. This is because |ak| = a+

k − a−k . Again, the
convergence of the sum of differences follows from the convergence of the individual series

∞∑
k=1

|ak| =
∞∑
k=1

(a+
k − a

−
k ) =

∞∑
k=1

a+
k −

∞∑
k=1

a−k = P −M.

Thus we have shown that A is absolutely convergent, hence not conditionally convergent.
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16. Show that if A =
∞∑
k=1

ak is convergent and {bk} is bounded and monotone, then A =
∞∑
k=1

akbk

is convergent. (This is known as Abel’s Test.)

This one relies on a trick called Abel’s Summation by Parts. If Sk =
k∑
j=1

aj is the partial

sum, then
n∑
k=1

akbk = Snbn+1 +
n∑
k=1

Sk(bk − bk+1). (4)

To see this, observe that for k ∈ N,

akbk = (Sk − Sk−1)bk = Sk(bk − bk+1) + (Skbk+1 − Sk−1bk)

where we understand S0 = 0. Now summing gives (4), noting that the second parenthesized
term telescopes.

Since {bn} is bounded and monotone, it is convergent: bn → B as n → ∞. Since A is
convergent, Sn → A as n → ∞. Thus the first term in the partial sum (4) converges to a
limit Snbn+1 → AB as n→∞.

The sum B =
∞∑
k=1

(bk − bk−1) is convergent because bn =
n∑
k=1

(bk − bk−1) → B as n → ∞

where we have taken b0 = 0. Since {bn} is monotone, the summands have a fixed sign and
the convergence is absolute. Finally, since Sn → A as n → ∞, it is bounded. This implies
that the last sum in (4) converges.

To show Tn =
n∑
k=1

Sk(bk− bk+1) tends to a limit as n→∞, suppose the bound is |Sk| ≤M

for all k. Now we check the Cauchy Criterion. Choose ε > 0. By the convergence of {bn},
there is an N ∈ R so that m, ` > N implies |bm+1 − b`+1| < ε

M+1 . So for any m, ` > N so
that ` > m,

|Tm − T`| =

∣∣∣∣∣ ∑̀
k=m+1

Sk(bk − bk+1)

∣∣∣∣∣ ≤ ∑̀
k=m+1

|Sk| |bk − bk+1|

≤
∑̀

k=m+1

M |bk − bk+1| =

∣∣∣∣∣ ∑̀
k=m+1

M(bk − bk+1)

∣∣∣∣∣ = M |bm+1 − b`+1| < ε.

Thus we have shown {Tn} is Cauchy, hence convergent.
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