More Problems.

1. Suppose $f:[-5, \infty) \rightarrow \mathbb{R}$ is defined by $f(x)=\sqrt{5+x}$. Using just the definition of differentiability, show that f is differentiable at $a=5$ and find $f^{\prime}(4)$.
We show that the limit of the difference quotient exists.

$$
\begin{aligned}
f^{\prime}(4) & =\lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{\sqrt{5+x}-\sqrt{5+4}}{x-4} \\
& =\lim _{x \rightarrow 4} \frac{(\sqrt{5+x}-3)(\sqrt{5+x}+3)}{(x-4)(\sqrt{5+x}+3)} \\
& =\lim _{x \rightarrow 4} \frac{5+x-9}{(x-4)(\sqrt{5+x}+3)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{5+x}+3}=\frac{1}{6}
\end{aligned}
$$

2. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is uniformly continuous. Show that the limit exists: $\lim _{x \rightarrow b-} f(x)$.

Proof. i.e., a uniformly continuous function on (a, b) has a continuous extension to $(a, b]$. This was a theorem in the text, but the problem asks us to prove it. Uniformly continuous means for every $\varepsilon>0$ there is a $\delta>0$ so that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in(a, b)$ satisfy $|x-y|<\delta$. Let $\left\{x_{n}\right\}$ be any sequence in (a, b) such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. We first show that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy Sequence. To see it, choose $\varepsilon>0$. By uniform continuity, there is a $\delta>0$ so that $\left|f\left(x_{m}\right)-f\left(x_{k}\right)\right|<\varepsilon$ whenever $\left|x_{m}-x_{k}\right|<\delta$. But $\left\{x_{n}\right\}$ is convergent, hence Cauchy. Thus there is an $N \in \mathbb{R}$ so that $\left|x_{m}-x_{k}\right|<\delta$ whenever any $m, k \in \mathbb{N}$ satisfy $m>N$ and $k>N$. Hence $\left|f\left(x_{m}\right)-f\left(x_{k}\right)\right|<\varepsilon$ whenever any $m, k \in \mathbb{N}$ satisfy $m>N$ and $k>N$. But this says $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy Sequence.
Since $\left\{f\left(x_{n}\right)\right\}$ is Cauchy, it is convergent, so let $L \in \mathbb{R}$ be the limit: $f\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$. We have found a subsequence converging to L. The rest of the argument is to show that continuous limit $f(x) \rightarrow L$ as $x \rightarrow b-$. To this end, we show that the definition of limit is satisfied: that for all $\varepsilon>0$ there is a $\delta>0$ so that $|f(x)-L|<\varepsilon$ for all $x \in(a, b)$ such that $b-\delta<x<b$. Choose $\varepsilon>0$. By uniform convergence, there is a $\delta>0$ so that $|f(x)-f(y)|<\frac{\varepsilon}{2}$ whenever $x, y \in(a, b)$ satisfy $|x-y|<\delta$. This is the δ needed for the limit. Now choose any $x \in(a, b)$ such that $b-\delta<x<b$. Since $f\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$, there is an $N \in \mathbb{R}$ so that $\left|f\left(x_{n}\right)-L\right|<\frac{\varepsilon}{2}$ whenever $n>N$. Finally, since $x_{k} \rightarrow b$ as $k \rightarrow \infty$, there is a $k \in \mathbb{N}$ so large that $k>N$ and $b-\delta<x_{k}<b$. By the usual sneaky adding and subtracting trick and the triangle inequality,

$$
|f(x)-L|=\left|f(x)-f\left(x_{k}\right)+f\left(x_{k}\right)-L\right| \leq\left|f(x)-f\left(x_{k}\right)\right|+\left|f\left(x_{k}\right)-L\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

by uniform continuity since both $x, x_{k} \in(b-\delta, b)$ so $\left|x-x_{k}\right|<\delta$ and by the Cauchy of $f\left(x_{n}\right)$. Thus $f(x) \rightarrow L$ as $x \rightarrow b-$.
3. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is differentiable at $a=0$ but not for any other $a \neq 0$. Prove that your function has this property.
Proof. We modify the Dirichlet function that is not continuous at any point. Let

$$
f(x)= \begin{cases}x^{2}, & \text { if } x \in \mathbb{Q} \text { is rational } \\ 0, & \text { if } \in \mathbb{R} \backslash \mathbb{Q} \text { is irrational. }\end{cases}
$$

If $a \neq 0$ then f is not continuous at a, hence not differentiable at a. Indeed by the density of rationals and irrationals, there are sequences $y_{n} \in \mathbb{Q}$ and $z_{n} \in \mathbb{R} \backslash \mathbb{Q}$ such that $y_{n} \rightarrow a$ and $z_{n} \rightarrow a$ as $n \rightarrow \infty$. Thus $f\left(y_{n}\right)=y_{n}^{2} \rightarrow a^{2}$ as $n \rightarrow \infty$ but $f\left(z_{n}\right)=0 \rightarrow 0$ as $n \rightarrow \infty$. Since two subsequences converging to a result in inconsistent limits $\left(a^{2} \neq 0\right)$, the function f is not continuous at a.
The differentiability at $a=0$ follows because f is squeezed between a "rock and a hard place." For all $x \in \mathbb{R},|f(x)| \leq x^{2}$. It follows that the difference quotient converges to zero. Indeed, choose $\epsilon>0$ and let $\delta=\epsilon$. Then for any $x \in \mathbb{R}$, if $0<|x-0|<\delta$ then

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|=\frac{|f(x)|}{|x|} \leq \frac{|x|^{2}}{|x|}=|x|<\delta=\varepsilon
$$

Thus f is differentiable at $a=0$ since the limit exists: $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0$.
4. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function which is differentiable on $(0, \infty)$. Suppose that $f(0)=0$ and $\left|f^{\prime}(x)\right|<M$ for all $x \in(0, \infty)$. Show that for all $x \geq 0$,

$$
|f(x)| \leq M|x|
$$

Proof. If $x=0$ then $|f(0)|=|0| \leq M|0|$. Thus suppose $x>0$. Because f is continuous on $[0, x]$ and differentiable on $(0, x)$, my the mean value theorem, there is $c \in(0, x)$ so that

$$
|f(x)|=|f(x)-f(0)|=\left|f^{\prime}(c)(x-0)\right|=\left|f^{\prime}(c)\right||x| \leq M|x|
$$

because $\left|f^{\prime}(c)\right| \leq M$ holds for any $c>0$.
5. Show that there is a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable on \mathbb{R} but $f^{\prime}(x)$ is not continuous on \mathbb{R}. Prove that your function has this property.
Proof. Let

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

For all $x \in \mathbb{R}$, this function is squeezed $|f(x)| \leq x^{2}$. As in problem (3), f is differentiable at zero and $f^{\prime}(0)=0$. For $x \neq 0$, the function is the product and composition of differentiable functions, whose derivative is gotten by the product and chain rules

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
$$

For the sequence $x_{n}=\frac{1}{2 \pi n}$ which tends to zero, we have $f^{\prime}\left(x_{n}\right)=-1$ so that $f^{\prime}\left(x_{n}\right) \rightarrow-1$ as $n \rightarrow \infty$. As this is not $f^{\prime}(0)=0, f^{\prime}$ is not continuous at 0 .
6. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b). Suppose $x, y \in(a, b)$ and that m is any number between $f^{\prime}(x)$ and $f^{\prime}(y)$. Then there is a z between x and y such that $f^{\prime}(z)=m$. In other words, the mean value property holds for the derivative, even though the derivative may not be a continuous function.
Proof. Choose $x, y \in(a, b)$. For convenience, let us assume that $x<y$ and $f^{\prime}(x)<m<$ $f^{\prime}(y)$. Other cases are similar. Then the function $g(x)=f(x)-m x$ is continuous on $[x, y]$ and differentiable on (a, b). Also $g^{\prime}(x)=f^{\prime}(x)-m<0$ and $g^{\prime}(y)=f^{\prime}(y)-m>0$.
As in the homework problem, it follows that for $z \in(x, y)$ close enough to $x, g(z)<g(x)$ and for z close enough to $y, g(z)<g(y)$. To see this, let's do the y case. Since g is differentiable at y,

$$
g^{\prime}(y)=\lim _{z \rightarrow y-} \frac{g(z)-g(y)}{z-y}
$$

so for any $\varepsilon>0$, there is a $\delta>0$ so that for any $z \in(x, y)$ so that $y-\delta<z<y$ we have

$$
\left|\frac{g(z)-g(y)}{z-y}-g^{\prime}(y)\right|<\varepsilon
$$

Applying this to $\epsilon=g^{\prime}(y)>0$, if $z \in[x, y]$ satisfies $y-\delta<z<y$ then

$$
\begin{aligned}
g(z) & =g(y)+\left(\frac{g(z)-g(y)}{z-y}-g^{\prime}(y)\right)(z-y)+g^{\prime}(y)(z-y) \\
& \leq g(y)+\left|\frac{g(z)-g(y)}{z-y}-g^{\prime}(y)\right||z-y|+g^{\prime}(y)(z-y) \\
& <g(y)+g^{\prime}(y)|z-y|+g^{\prime}(y)(z-y)=g(y) .
\end{aligned}
$$

Thus it follows that there are points in the interval $z_{i} \in[x, y]$ such that $g\left(z_{1}\right)<g(x)$ and $g\left(z_{2}\right)<g(y)$. But since g is continuous on $[x, y]$, by the minimum theorem, there is $c \in[x, y]$ so that

$$
g(c)=\inf _{z \in[x, y]} g(z)
$$

But c cannot be the endpoint because $g(c) \leq \min \left\{g\left(z_{1}\right), g\left(z_{2}\right)\right\}<\min \{g(x), g(y)\}$, thus $c \in(x, y)$, where g is differentiable. It follows from the theorem about the vanishing of the derivative at a minimum point and the definition of g,

$$
f^{\prime}(c)-m=g^{\prime}(c)=0
$$

so that at the intermediate point $f^{\prime}(c)=m$, as desired.
7. Which is bigger e^{π} or π^{e} ?

Proof. Consider the function $f(x)=e^{-x} x^{e}$. It is continuous on $[0, \infty)$ and differentiable on $(0, \infty)$ since we use logs and exponentials to define $f(x)=\exp (g(x))$ where $g(x)=$ $-x+e \ln x$. Since $g^{\prime}(x)=-1+\frac{e}{x}$, it follows that $g^{\prime}(x)>0$ for $x \in(0, e)$ and $g^{\prime}(x)<0$ for $x \in(e, \infty)$. Hence $g(e)=0>g(\pi)$ by the corollary to the Mean Value Theorem relating decreasing to derivatives. Because exp is a strictly increasing function, it is increasing and decreasing on the same intervals as g. It follows from $e<\pi$ that

$$
1=f(e)=\exp (g(e))=\exp (0)>\exp (g(\pi))=f(\pi)=\frac{\pi^{e}}{e^{\pi}}
$$

so $\pi^{e}<e^{\pi}$.
8. Suppose that $f:(a, \infty) \rightarrow \mathbb{R}$ is differentiable and that $f^{\prime}(x) \rightarrow \infty$ as $x \rightarrow \infty$. Then show that f is not uniformly continuous on $(0, \infty)$.
Proof. By negating the definition, we are to show f is not uniformly continuous on (a, ∞) which means there exists an $\varepsilon>0$ such that for every $\delta>0$ there are $x, y \in(a, \infty)$ such that $|x-y|<\delta$ and $|f(x)-f(y)| \geq \varepsilon$. We show this is true for $\epsilon=1$. Choose $\delta>0$. Since $f^{\prime}(x) \rightarrow \infty$, there is $R \in \mathbb{R}$ so that $f^{\prime}(c)>\frac{2}{\delta}$ whenever $c \in(a, \infty)$ satisfies $c>R$. Now pick an $x \in(a, \infty)$ such that $x>R$. Let $y=x+\frac{\delta}{2}$. We have $y \in(a, \infty)$ and it satisfies $|y-x|=\frac{\delta}{2}<\delta$. Because f is continuous on $[x, y]$ and differentiable on (x, y), by the Mean Value Theorem, there is a $c \in(x, y)$ such that

$$
|f(y)-f(x)|=\left|f^{\prime}(c)(y-x)\right|=f^{\prime}(c)(y-x)>\frac{2}{\delta} \cdot \frac{\delta}{2}=1 \geq \varepsilon
$$

because $c>x>R$.
9. Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function. Then f^{2} is integrable on $[a, b]$ and

$$
\begin{equation*}
\left(\int_{a}^{b} f(x) d x\right)^{2} \leq(b-a) \int_{a}^{b} f^{2}(x) d x \tag{1}
\end{equation*}
$$

Proof. First, for all $x \in[a, b], \inf _{x \in[a, b]} f \leq f(x) \leq \sup _{x \in[a, b]} f$ so $0 \leq f^{2}(x) \leq M$ where $M=\max \left\{\left|\inf _{x \in[a, b]} f\right|^{2},\left|\sup _{x \in[a, b]} f\right|^{2}\right\}$. Thus f is bounded.
Next we show f^{2} is integrable using the theorem that says g is integrable om $[a, b]$ if and only if for every $\varepsilon>0$ there is a partition $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ of $[a, b]$ so that $U(g, \mathcal{P})-L(g, \mathcal{P})<\varepsilon$. Here the upper and lower sums are

$$
U(g, \mathcal{P})=\sum_{k=1}^{n} M_{k}(g)\left(x_{k}-x_{k-1}\right), \quad L(g, \mathcal{P})=\sum_{k=1}^{n} m_{k}(g)\left(x_{k}-x_{k-1}\right)
$$

where

$$
M_{k}(g)=\sup _{x \in\left[x_{k-1}, x_{k}\right]} g(x), \quad m_{k}(g)=\inf _{x \in\left[x_{k-1}, x_{k}\right]} g(x) .
$$

For any partition, consider three cases for a subinterval: $M_{k} \leq 0, m_{k} \leq 0 \leq M_{k}$ and $0 \leq m_{k}$. In the first case for $x \in\left[x_{k-1}, x_{k}\right]$,

$$
m_{k}(f) \leq f(x) \leq M_{k}(f) \leq 0
$$

so that

$$
0 \leq M_{k}(f)^{2} \leq f^{2}(x) \leq m_{k}(f)^{2}
$$

which implies
$M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right) \leq m_{k}(f)^{2}-M_{k}(f)^{2}=\left|m_{k}(f)+M_{k}(f)\right|\left|m_{k}(f)-M_{k}(f)\right| \leq 2 M\left(M_{k}(f)-m_{k}(f)\right)$.
In the second case for $x \in\left[x_{k-1}, x_{k}\right], m_{k}(f) \leq 0 \leq M_{k}(f)$. Thus,

$$
m_{k}(f) \leq f(x) \leq M_{k}(f)
$$

so that
$0 \leq f^{2}(x) \leq \max \left\{m_{k}(f)^{2}, M_{k}(f)^{2}\right\} \leq\left(M_{k}(f)-m_{k}(f)\right)^{2} \leq\left(\left|M_{k}(f)\right|+\left|m_{k}(f)\right|\right)\left(M_{k}(f)-m_{k}(f)\right)$
which implies

$$
M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right) \leq M_{k}\left(f^{2}\right) \leq 2 M\left(M_{k}(f)-m_{k}(f)\right)
$$

In the third case, for $x \in\left[x_{k-1}, x_{k}\right]$,

$$
0 \leq m_{k}(f) \leq f(x) \leq M_{k}(f)
$$

so that

$$
0 \leq m_{k}(f)^{2} \leq f^{2}(x) \leq M_{k}(f)^{2}
$$

which implies
$M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right) \leq M_{k}(f)^{2}-m_{k}(f)^{2}=\left|M_{k}(f)+m_{k}(f)\right|\left|M_{k}(f)-m_{k}(f)\right| \leq 2 M\left(M_{k}(f)-m_{k}(f)\right)$.
Hence, for any subinterval $\left[x_{k-1}, x_{k}\right]$ in every case we have

$$
M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right) \leq 2 M\left(M_{k}(f)-m_{k}(f)\right)
$$

To prove f^{2} is integrable, choose $\varepsilon>0$. Since f is integrable, there is a partition \mathcal{P} such that

$$
U(f, \mathcal{P})-L(f, \mathcal{P})<\frac{\varepsilon}{2 M+1}
$$

Then the same partition applied to f^{2} yields

$$
\begin{aligned}
U\left(f^{2}, \mathcal{P}\right)-L\left(f^{2}, \mathcal{P}\right) & =\sum_{k=1}^{n}\left(M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right)\right)\left(x_{k}-x_{k-1}\right) \\
& \leq \sum_{k=1}^{n} 2 M\left(M_{k}(f)-m_{k}(f)\right)\left(x_{k}-x_{k-1}\right) \\
& =2 M(U(f, \mathcal{P})-L(f, \mathcal{P})) \\
& <\frac{2 M \varepsilon}{2 M+1}<\varepsilon
\end{aligned}
$$

Thus f^{2} is integrable.
Inequality (1) is known as the Schwartz Inequality. Its proof is a little trick. The inequality is trivial if $a=b$, so we assume $a<b$. For each $t \in \mathbb{R}$ the function $(f(x)+t)^{2}$ is integrable since it is the square of an integrable function $f(x)+t$. It is nonnegative, thus for all $t \in \mathbb{R}$,

$$
0 \leq \int_{a}^{b}(f(x)+t)^{2} d x=\int_{a}^{b} f(x)^{2} d x+2 t \int_{a}^{b} f(x) d x+t^{2} \int_{a}^{b} d x=\alpha+2 \beta t+\gamma t^{2}
$$

The quadratic function is minimized when $t=-\frac{\beta}{\gamma}$. Substituting this t,

$$
0 \leq \alpha-\frac{2 \beta^{2}}{\gamma}+\frac{\gamma \beta^{2}}{\gamma^{2}}=\alpha-\frac{\beta^{2}}{\gamma}=\int_{a}^{b} f(x)^{2} d x-\frac{1}{b-a}\left(\int_{a}^{b} f(x) d x\right)^{2}
$$

which is the Schwartz Inequality (1).
10. Let $f_{n}, f:[a, b] \rightarrow \mathbb{R}$ be functions defined on a closed, bounded interval. Assume that f_{n} are bounded and integrable, and that $f_{n} \rightarrow f$ uniformly as $n \rightarrow \infty$. Then f is integrable and we can interchange limit and integral

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\int_{a}^{b} f_{n}(x) d x\right)=\int_{a}^{b} f(x) d x \tag{2}
\end{equation*}
$$

Proof. First, we show f is bounded. Since $f_{n} \rightarrow f$ converges uniformly, for every $\varepsilon>0$, there is an $N(\epsilon) \in \mathbb{R}$ so that if $n \in \mathbb{N}$ satisfies $n>N(\varepsilon)$ and $x \in[a, b]$, then $\left|f_{n}(x)-f(x)\right|<\epsilon$. Taking $\epsilon=1$, and fix an $n \in \mathbb{N}$ large enough so $n>N(1)$, then any $x \in[a, b]$ satisfies

$$
|f(x)|=\left|f_{n}(x)+f(x)-f_{n}(x)\right| \leq\left|f_{n}(x)\right|+\left|f(x)-f_{n}(x)\right| \leq \sup _{x \in[a, b]}\left|f_{n}(x)\right|+1
$$

which is finite because f_{n} is bounded. Thus f is bounded.
Next we show f is integrable. For this purpose, we use the theorem that says f is integrable om $[a, b]$ if and only if for every $\varepsilon>0$ there is a partition $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ of $[a, b]$ so that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$. Here the upper and lower sums are

$$
U(f, \mathcal{P})=\sum_{k=1}^{n} M_{k}(f)\left(x_{k}-x_{k-1}\right), \quad L(f, \mathcal{P})=\sum_{k=1}^{n} m_{k}(f)\left(x_{k}-x_{k-1}\right)
$$

where

$$
M_{k}(f)=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x), \quad m_{k}(f)=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)
$$

Now choose $\varepsilon>0$. We approximate f by an f_{ℓ}, then choose a partition that is good for f_{ℓ} and then show it is good for f. Since the convergence is uniform, there is $N \in R$ so that whenever $\ell \in \mathbb{N}$ satisfies $\ell>N$ and every $x \in[a, b]$ we have

$$
\begin{equation*}
\left|f_{\ell}(x)-f(x)\right|<\frac{\varepsilon}{6(b-a)+6} \tag{3}
\end{equation*}
$$

We pick one such ℓ to show integrable. Thus, for every $x \in[a, b]$,

$$
f_{\ell}(x)-\frac{\varepsilon}{6(b-a)+6}<f(x)<f_{\ell}(x)+\frac{\varepsilon}{6(b-a)+6} .
$$

Now f_{ℓ} is integrable, so by the theorem, there is a partition of $\mathcal{P}=\left\{a=x_{0}<x_{1}<\cdots<\right.$ $\left.x_{n}=b\right\}$ of $[a, b]$ so that $U\left(f_{\ell}, \mathcal{P}\right)-L\left(f_{\ell}, \mathcal{P}\right)<\frac{\epsilon}{3}$. Hence taking inf and sup over $\left[x_{k-1}, x_{k}\right]$,

$$
\begin{aligned}
& m_{k}\left(f_{\ell}\right)-\frac{\varepsilon}{6(b-a)+6} \leq \inf _{x \in\left[x_{k-1}, x_{k}\right]} f_{\ell}-\frac{\varepsilon}{6(b-a)+6} \leq \inf _{x \in\left[x_{k-1}, x_{k}\right]} f=m_{k}(f) \\
& M_{k}(f)=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f \leq \sup _{x \in\left[x_{k-1}, x_{k}\right]} f_{\ell}+\frac{\varepsilon}{6(b-a)+6} \leq M_{k}\left(f_{\ell}\right)+\frac{\varepsilon}{6(b-a)+6}
\end{aligned}
$$

It follows that

$$
M_{k}(f)-m_{k}(f) \leq M_{k}\left(f_{\ell}\right)-m_{k}\left(f_{\ell}\right)+\frac{\varepsilon}{3(b-a)+3}
$$

Summing over the subintervals,

$$
\begin{aligned}
U(f, \mathcal{P})-L(f, \mathcal{P}) & =\sum_{k=1}^{n}\left(M_{k}(f)-m_{k}(f)\right)\left(x_{k}-x_{k-1}\right) \\
& \leq \sum_{k=1}^{n}\left(M_{k}\left(f_{\ell}\right)-m_{k}\left(f_{\ell}\right)+\frac{\varepsilon}{3(b-a)+3}\right)\left(x_{k}-x_{k-1}\right) \\
& =U\left(f_{\ell}, \mathcal{P}\right)-L\left(f_{\ell}, \mathcal{P}\right)+\frac{\varepsilon}{3(b-a)+3} \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon(b-a)}{3(b-a)+3}<\epsilon
\end{aligned}
$$

Hence f is integrable.
To show that the limit of the integrals is the integral of the limit, choose $\epsilon>0$ and let $N \in \mathbb{R}$ as above. Applying (3), for every $n>N$ we get

$$
\left|\int_{a}^{b} f(x) d x-\int_{a}^{b} f_{n}(x) d x\right| \leq \int_{a}^{b}\left|f(x)-f_{n}(x)\right| d x \leq \int_{a}^{b} \frac{\varepsilon d x}{6(b-1)+6}=\frac{\varepsilon(b-a)}{6(b-1)+6}<\varepsilon
$$

Thus we have shown (2).
11. Define $\log x=\int_{1}^{x} \frac{d t}{t}$ for $x>0$ as usual. If $x=e^{y}$ is the inverse function of $y=\log x$, show that e^{y} is differentiable and $\frac{d}{d y} e^{y}=e^{y}$.
The differentiability of $F(x)=\log x$ follows from the Fundamental Theorem of Calculus, which says that if f is integrable on $[a, b]$ for any $0<a<1<b<\infty$ then $F(z)=\int_{1}^{z} f(t) d t$
is uniformly continuous on $[a, b]$ and if f is continuous at $z \in(a, b)$, then F is differentiable at z and $F^{\prime}(z)=f(z)$. In our case $f(t)=\frac{1}{t}$ so it is continuous, hence integrable on $[a, b]$ and since f is continuous at $z, F^{\prime}(z)=\frac{1}{z}$.
Since $F^{\prime}(z)>0$, it is strictly increasing, and since $F(z)$ is continuous, the inverse function theorem for continuous functions says that $F^{-1}=\exp :[\log a, \log b] \rightarrow \mathbb{R}$ is continuous and strictly increasing. We have defined F on $(0, \infty)$ (by taking a small and b large enough). So choose $w \in F((0, \infty))$ and let $F(z)=w$ be the corresponding point inverse to w. By the theorem on derivatives of inverse functions, which says, if F is monotone on $(0, \infty)$ and differentiable at $z \in(0, \infty)$ and $F^{\prime}(z)=\frac{1}{z} \neq 0$, then the inverse function is differentiable at $w=F(z)$ and

$$
\left.\frac{d}{d y} e^{y}\right|_{y=w}=\left.\frac{d}{d y} F^{-1}(y)\right|_{y=w}=\frac{1}{F^{\prime}(z)}=\frac{1}{1 / z}=z=F^{-1}(w)=e^{w}
$$

12. Does the improper integral $\int_{-\infty}^{\infty} \frac{d t}{\left(t^{2}+t^{4}\right)^{\frac{1}{3}}}$ converge? Why?

There are four limits: at $-\infty, 0-, 0+$ and ∞. Split the integral into four parts

$$
I_{1}+I_{2}+I_{3}+I_{4}=\int_{-\infty}^{-1}+\int_{-1}^{0}+\int_{0}^{1}+\int_{1}^{\infty}
$$

Use the comparison theorem for improper integrals. If f, g are integrable on all subintervals and if $|f(t)| \leq g(t)$ for all t and if the improper integral $\int_{I} g(t) d t$ converges then the improper integral $\int_{I} f(t) d t$ converges. For the interval I_{2} and I_{3}, we have for $0<|t| \leq 1$,

$$
|f(t)|=\frac{1}{\left(t^{2}+t^{4}\right)^{\frac{1}{3}}} \leq \frac{1}{t^{\frac{2}{3}}}=g(t)
$$

and the improper integral conveges

$$
\int_{0}^{1} g(t) d t=\int_{0}^{1} \frac{d t}{t^{\frac{2}{3}}}=\lim _{\varepsilon \rightarrow 0+} \int_{\varepsilon}^{1} \frac{d t}{t^{\frac{2}{3}}}=\lim _{\varepsilon \rightarrow 0+}\left[3 t^{\frac{1}{3}}\right]_{\varepsilon}^{1}=\lim _{\varepsilon \rightarrow 0+}\left[3-3 \varepsilon^{\frac{1}{3}}\right]=3
$$

Thus the improper integral I_{3} exists. Because $g(t)$ is an even function

$$
\int_{-1}^{0} g(t) d t=\int_{-1}^{0} \frac{d t}{t^{\frac{2}{3}}}=\lim _{\varepsilon \rightarrow 0-} \int_{-1}^{\varepsilon} \frac{d t}{t^{\frac{2}{3}}}=\lim _{\varepsilon \rightarrow 0+} \int_{\varepsilon}^{1} \frac{d t}{t^{\frac{2}{3}}}=3
$$

from before. Thus the improper integral I_{2} exists also.
For the interval I_{1} and I_{4}, we have for $1 \leq|t|$,

$$
|f(t)|=\frac{1}{\left(t^{2}+t^{4}\right)^{\frac{1}{3}}} \leq \frac{1}{t^{\frac{4}{3}}}=g(t)
$$

and the improper integral conveges

$$
\int_{1}^{\infty} g(t) d t=\int_{1}^{\infty} \frac{d t}{t^{\frac{4}{3}}}=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{d t}{t^{\frac{4}{3}}}=\lim _{R \rightarrow \infty}\left[-3 t^{-\frac{1}{3}}\right]_{1}^{R}=\lim _{R \rightarrow \infty}\left[3-3 R^{-\frac{1}{3}}\right]=3
$$

Thus the improper integral I_{4} exists. Because $g(t)$ is an even function

$$
\int_{-\infty}^{-1} g(t) d t=\int_{-\infty}^{-1} \frac{d t}{t^{\frac{4}{3}}}=\lim _{R \rightarrow \infty} \int_{-R}^{-1} \frac{d t}{t^{\frac{4}{3}}}=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{d t}{t^{\frac{4}{3}}}=3
$$

from before. Thus the improper integral I_{1} exists also.
13. Show that if the limit $\lim _{n \rightarrow \infty} \frac{\left|b_{k}\right|}{\left|a_{k}\right|}=L$ exists and if $\sum_{k=1}^{\infty} a_{k}$ converges absolutely then $\sum_{k=1}^{\infty} b_{k}$ converges absolutely.
The existence of the limit of nonnegative numbers so $L \geq 0$ shows that the series can be compared. There is an $N \in \mathbb{R}$ so that $a_{k} \neq 0$ and

$$
\frac{\left|b_{k}\right|}{\left|a_{k}\right|}<L+1
$$

whenever $k>N$. Hence, for all $k>N$,

$$
\left|b_{k}\right| \leq(L+1)\left|a_{k}\right|
$$

Hence, by the regular comparison test, $\sum_{k=1}^{\infty}\left|b_{k}\right|$ is convergent because $\sum_{k=1}^{\infty}(L+1)\left|a_{k}\right|$ is convergent by assumption.
14. Determine whether $\sum_{k=1}^{\infty}(-1)^{k} \frac{(k!)^{2}}{(2 k)!}$ is absolutely convergent, conditionally convergent or divergent.
To check absolute convergence, use the ratio test.
$\rho=\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=\lim _{k \rightarrow \infty} \frac{\frac{((k+1)!)^{2}}{(2 k+2)!}}{\frac{(k!)^{2}}{(2 k)!}}=\lim _{k \rightarrow \infty} \frac{(k+1)!\cdot(k+1)!}{(2 k+2)!} \cdot \frac{(2 k)!}{k!\cdot k!}=\lim _{k \rightarrow \infty} \frac{(k+1)^{2}}{(2 k+2)(2 k+1)}=\frac{1}{4}$.
Since $\rho<1$, the series is absolutely convergent.
15. Let $a^{+}=a$ if $a \geq 0$ and $a^{+}=0$ if $a<0$. Similarly, let $a^{-}=\min \{0, a\}$. Show that if $A=\sum_{k=1}^{\infty} a_{k}$ is conditionally convergent, then the series

$$
P=\sum_{k=1}^{\infty} a_{k}^{+}, \quad M=\sum_{k=1}^{\infty} a_{k}^{-}
$$

are both divergent.
Argue by contradiction. We assume that A is conditionally convergent and both P and M are not divergent. Thus we may assume that one of the sums, say P, is convergent. Using the fact that $a_{k}=a_{k}^{+}+a_{k}^{-}$, we have the series of differences from two convergent series is convergent and converges to the difference, so

$$
M=\sum_{k=1}^{\infty} a_{k}^{-}=\sum_{k=1}^{\infty}\left(a_{k}-a_{k}^{+}\right)=\sum_{k=1}^{\infty} a_{k}-\sum_{k=1}^{\infty} a_{k}^{+}=A-P
$$

converges also. Similarly if M converges then so does P. Thus both P and M converge. It follows that A is absolutely convergent. This is because $\left|a_{k}\right|=a_{k}^{+}-a_{k}^{-}$. Again, the convergence of the sum of differences follows from the convergence of the individual series

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|=\sum_{k=1}^{\infty}\left(a_{k}^{+}-a_{k}^{-}\right)=\sum_{k=1}^{\infty} a_{k}^{+}-\sum_{k=1}^{\infty} a_{k}^{-}=P-M
$$

Thus we have shown that A is absolutely convergent, hence not conditionally convergent.
16. Show that if $A=\sum_{k=1}^{\infty} a_{k}$ is convergent and $\left\{b_{k}\right\}$ is bounded and monotone, then $A=\sum_{k=1}^{\infty} a_{k} b_{k}$ is convergent. (This is known as Abel's Test.)
This one relies on a trick called Abel's Summation by Parts. If $S_{k}=\sum_{j=1}^{k} a_{j}$ is the partial sum, then

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} b_{k}=S_{n} b_{n+1}+\sum_{k=1}^{n} S_{k}\left(b_{k}-b_{k+1}\right) \tag{4}
\end{equation*}
$$

To see this, observe that for $k \in \mathbb{N}$,

$$
a_{k} b_{k}=\left(S_{k}-S_{k-1}\right) b_{k}=S_{k}\left(b_{k}-b_{k+1}\right)+\left(S_{k} b_{k+1}-S_{k-1} b_{k}\right)
$$

where we understand $S_{0}=0$. Now summing gives (4), noting that the second parenthesized term telescopes.
Since $\left\{b_{n}\right\}$ is bounded and monotone, it is convergent: $b_{n} \rightarrow B$ as $n \rightarrow \infty$. Since A is convergent, $S_{n} \rightarrow A$ as $n \rightarrow \infty$. Thus the first term in the partial sum (4) converges to a limit $S_{n} b_{n+1} \rightarrow A B$ as $n \rightarrow \infty$.
The sum $B=\sum_{k=1}^{\infty}\left(b_{k}-b_{k-1}\right)$ is convergent because $b_{n}=\sum_{k=1}^{n}\left(b_{k}-b_{k-1}\right) \rightarrow B$ as $n \rightarrow \infty$ where we have taken $b_{0}=0$. Since $\left\{b_{n}\right\}$ is monotone, the summands have a fixed sign and the convergence is absolute. Finally, since $S_{n} \rightarrow A$ as $n \rightarrow \infty$, it is bounded. This implies that the last sum in (4) converges.
To show $T_{n}=\sum_{k=1}^{n} S_{k}\left(b_{k}-b_{k+1}\right)$ tends to a limit as $n \rightarrow \infty$, suppose the bound is $\left|S_{k}\right| \leq M$ for all k. Now we check the Cauchy Criterion. Choose $\varepsilon>0$. By the convergence of $\left\{b_{n}\right\}$, there is an $N \in \mathbb{R}$ so that $m, \ell>N$ implies $\left|b_{m+1}-b_{\ell+1}\right|<\frac{\varepsilon}{M+1}$. So for any $m, \ell>N$ so that $\ell>m$,

$$
\begin{aligned}
\left|T_{m}-T_{\ell}\right| & =\left|\sum_{k=m+1}^{\ell} S_{k}\left(b_{k}-b_{k+1}\right)\right| \leq \sum_{k=m+1}^{\ell}\left|S_{k}\right|\left|b_{k}-b_{k+1}\right| \\
& \leq \sum_{k=m+1}^{\ell} M\left|b_{k}-b_{k+1}\right|=\left|\sum_{k=m+1}^{\ell} M\left(b_{k}-b_{k+1}\right)\right|=M\left|b_{m+1}-b_{\ell+1}\right|<\varepsilon
\end{aligned}
$$

Thus we have shown $\left\{T_{n}\right\}$ is Cauchy, hence convergent.

