Final Given Dec. 18, 2008.

- 1. Let \mathcal{F} be an ordered field and let $A \subset \mathcal{F}$.
 - (a) Define what it means for $m \in \mathcal{F}$ to be an *upper bound* of A.
 - (b) Define what it means for $m \in \mathcal{F}$ to be the *least upper bound* of A.
 - (c) Define what it means for \mathcal{F} to be *complete*.
 - (d) Let $A = \{x \in \mathbb{Q} : x < \pi\} \subset \mathbb{R}$. Find the least upper bound of A, and prove your answer.
- 2a. Let $D \subset \mathbb{R}$, let $a \in D$ and let $f: D \to \mathbb{R}$. Define what it means for f to be *continuous* at a.
- b. Let $D = \mathbb{R}$ and $f : D \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x, & \text{if } x \ge 3, \\ \\ 1, & \text{if } x < 3. \end{cases}$$

Show directly from the definition that f is not ontinuous at 3.

3. Let $f:[0,2] \to \mathbb{R}$ be a bounded nonnegative function $(f(x) \ge 0$ for all x) that is integrable on [0,2]. Suppose that $\lim_{x\to 1} f(x) = 3$. Show that

$$\int_0^2 f(t) \, dt > 0$$

4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ satisfies

$$0 \le f(x) \le (x-1)^2$$

for all $x \in \mathbb{R}$. Show that f is differentiable at x = 1 and find f'(1).

- 5a. Let $D \subset \mathbb{R}$ and let $f: D \to \mathbb{R}$. State the definition: f is a uniformly continuous on D.
- b. Show that $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous on \mathbb{R} , where $f(x) = \frac{x}{1+x^2}$.
- 6a. Let $\{S_n\}$ be a sequence of real numbers. State the definition: $\{S_n\}$ is a Cauchy Sequence.
- b. For each $n \in \mathbb{N}$ let $a_n \in \mathbb{R}$ and define

$$S_n = a_1 + a_2 + \dots + a_n,$$

 $T_n = |a_1| + |a_2| + \dots + |a_n|.$

Suppose that $T = \lim_{n \to \infty} T_n$ exists and is finite. Show that $S = \lim_{n \to \infty} S_n$ exists and is finite. [Hint: you can use part (a.) This shows that if $\sum_{i=1}^{\infty} |a_i|$ converges then so does $\sum_{i=1}^{\infty} a_i$.]

7. Determine whether the improper integral exists. If it does, find its value.

$$I = \int_{-1}^{1} \frac{\sin t}{|t|^{3/2}} \, dt$$

- 8. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) Let $f_n : [0,1] \to \mathbb{R}$ be a sequence of continuous functions such that for all $x \in [0,1]$ we have $\lim_{n \to \infty} f_n(x) = 0$. Then $\lim_{n \to \infty} \int_0^1 f_n(t) dt = 0$.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ and $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of differentiable functions such that $f_n \to f$ uniformly on \mathbb{R} as $n \to \infty$. Then f is differentiable on \mathbb{R} .
 - (c) Let $f : [a, b] \to \mathbb{R}$ be a continuous function that is differentiable on (a, b). Suppose that the derivative function has a finite limit $L = \lim_{x \to a+} f'(x)$. Then f is differentiable at a and L = f'(a).
- 9a. Let $f:[1,10] \to \mathbb{R}$ be a bounded function. State the **definition**: f is *integrable* on [0,10].
- b. Fill in the blank. [There is more than one answer but don't write the definition again. Your statement must be an "if and only if" statement to receive credit. See problem (c.)] **Theorem B.**

Let $f: [0,10] \to \mathbb{R}$ be a bounded function. Then f is integrable on [0,10] if and only if ?

c. Using just the definition or just your Theorem B above, show that $f(t) = \sin t$ is integrable on [0, 10].

Final Given December 15, 2004.

- 1. Let $E = \left\{ \frac{p}{q} : p, q \in \mathbf{N} \right\}$. Find the infimum inf E. Prove your answer.
- 2. Using only the definition of integrability, prove that f(x) is integrable on [0,1], where

$$f(x) = \begin{cases} 0, & \text{if } x = \frac{1}{3}; \\ 1, & \text{if } x = \frac{2}{3}; \\ 2, & \text{otherwise} \end{cases}$$

- 3. Let $f : [0,1] \to \mathbf{R}$ be continuous on [0,1] and suppose that f(x) = 0 for each rational number x in [0,1]. Prove that f(x) = 0 for all $x \in [0,1]$.
- 4. Determine whether the statements are true or false. If the statement is true, give the reason. If the statement is false, provide a counterexample.
 - (a) **Statement.** Let f be differentiable at a. Then $\lim_{h \to 0} \frac{f(a+h) f(a-h)}{2h} = f'(a)$.
 - (b) **Statement.** Let $f : [0,1] \to \mathbf{R}$ be such that |f(x)| is Riemann integrable on [0,1]. Then f(x) is Riemann Integrable on [0,1].
 - (c) **Statement.** If $f:[a,b] \to \mathbf{R}$ is differentiable on [a,b] then F(x) is continuous on [a,b], where $F(x) = \int_{a}^{x} f(t) dt$.

- 5. Suppose that f and g are continuous functions on [0, 1] and differentiable on (0, 1). Suppose that f(0) = g(0) and that $f'(x) \le g'(x)$ for all $x \in (a, b)$. Show that $f(x) \le g(x)$ for all $x \in [0, 1]$.
- 6. Let $E \subseteq \mathbf{R}$ and $f: E \to \mathbf{R}$.
 - (a) State the definition: f is uniformly continuous on E.
 - (b) Let f(x) be uniformly continuous on **R**. Prove that

$$\lim_{t \to 0} \left\{ \sup_{x \in \mathbf{R}} |f(x) - f(x+t)| \right\} = 0.$$

7. Show that $\{z_n\}_{n \in \mathbb{N}}$ is Cauchy, where $z_n = \int_n^{n+1} \frac{\sin t}{1+t} dt$.

8. Let $x_1 = 0$ and $x_{n+1} = \frac{1}{2} + \sin(x_n)$ for all n > 1. Prove that $\{x_n\}_{n \in \mathbb{N}}$ converges.