Math 3210 § 2.
Treibergs

Final Exam Name: Sample Exam
December 10, 2009

Final Given Dec. 18, 2008.

1. Let \mathcal{F} be an ordered field and let $A \subset \mathcal{F}$.
(a) Define what it means for $m \in \mathcal{F}$ to be an upper bound of A.
(b) Define what it means for $m \in \mathcal{F}$ to be the least upper bound of A.
(c) Define what it means for \mathcal{F} to be complete.
(d) Let $A=\{x \in \mathbb{Q}: x<\pi\} \subset \mathbb{R}$. Find the least upper bound of A, and prove your answer.

2a. Let $D \subset \mathbb{R}$, let $a \in D$ and let $f: D \rightarrow \mathbb{R}$. Define what it means for f to be continuous at a.
b. Let $D=\mathbb{R}$ and $f: D \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x, & \text { if } x \geq 3 \\ 1, & \text { if } x<3\end{cases}
$$

Show directly from the definition that f is not ontinuous at 3 .
3. Let $f:[0,2] \rightarrow \mathbb{R}$ be a bounded nonnegative function $(f(x) \geq 0$ for all $x)$ that is integrable on $[0,2]$. Suppose that $\lim _{x \rightarrow 1} f(x)=3$. Show that

$$
\int_{0}^{2} f(t) d t>0
$$

4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
0 \leq f(x) \leq(x-1)^{2}
$$

for all $x \in \mathbb{R}$. Show that f is differentiable at $x=1$ and find $f^{\prime}(1)$.
5a. Let $D \subset \mathbb{R}$ and let $f: D \rightarrow \mathbb{R}$. State the definition: f is a uniformly continuous on D.
b. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on \mathbb{R}, where $f(x)=\frac{x}{1+x^{2}}$.

6a. Let $\left\{S_{n}\right\}$ be a sequence of real numbers. State the definition: $\left\{S_{n}\right\}$ is a Cauchy Sequence..
b. For each $n \in \mathbb{N}$ let $a_{n} \in \mathbb{R}$ and define

$$
\begin{gathered}
S_{n}=a_{1}+a_{2}+\cdots+a_{n} \\
T_{n}=\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
\end{gathered}
$$

Suppose that $T=\lim _{n \rightarrow \infty} T_{n}$ exists and is finite. Show that $S=\lim _{n \rightarrow \infty} S_{n}$ exists and is finite. [Hint: you can use part (a.) This shows that if $\sum_{i=1}^{\infty}\left|a_{i}\right|$ converges then so does $\sum_{i=1}^{\infty} a_{i}$.]
7. Determine whether the improper integral exists. If it does, find its value.

$$
I=\int_{-1}^{1} \frac{\sin t}{|t|^{3 / 2}} d t
$$

8. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of continuous functions such that for all $x \in[0,1]$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=0$. Then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(t) d t=0$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of differentiable functions such that $f_{n} \rightarrow f$ uniformly on \mathbb{R} as $n \rightarrow \infty$. Then f is differentiable on \mathbb{R}.
(c) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function that is differentiable on (a, b). Suppose that the derivative function has a finite limit $L=\lim _{x \rightarrow a+} f^{\prime}(x)$. Then f is differentiable at a and $L=f^{\prime}(a)$.

9a. Let $f:[1,10] \rightarrow \mathbb{R}$ be a bounded function. State the definition: f is integrable on $[0,10]$.
b. Fill in the blank. [There is more than one answer but don't write the definition again. Your statement must be an "if and only if" statement to receive credit. See problem (c.)]
Theorem B.
Let $f:[0,10] \rightarrow \mathbb{R}$ be a bounded function. Then f is integrable on $[0,10]$ if and only if
\square
c. Using just the definition or just your Theorem B above, show that $f(t)=\sin t$ is integrable on $[0,10]$.

Final Given December 15, 2004.

1. Let $E=\left\{\frac{p}{q}: p, q \in \mathbf{N}\right\}$. Find the infimum $\inf E$. Prove your answer.
2. Using only the definition of integrability, prove that $f(x)$ is integrable on $[0,1]$, where

$$
f(x)= \begin{cases}0, & \text { if } x=\frac{1}{3} \\ 1, & \text { if } x=\frac{2}{3} \\ 2, & \text { otherwise }\end{cases}
$$

3. Let $f:[0,1] \rightarrow \mathbf{R}$ be continuous on $[0,1]$ and suppose that $f(x)=0$ for each rational number x in $[0,1]$. Prove that $f(x)=0$ for all $x \in[0,1]$.
4. Determine whether the statements are true or false. If the statement is true, give the reason. If the statement is false, provide a counterexample.
(a) Statement. Let f be differentiable at a. Then $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}=f^{\prime}(a)$.
(b) Statement. Let $f:[0,1] \rightarrow \mathbf{R}$ be such that $|f(x)|$ is Riemann integrable on $[0,1]$. Then $f(x)$ is Riemann Integrable on $[0,1]$.
(c) Statement. If $f:[a, b] \rightarrow \mathbf{R}$ is differentiable on $[a, b]$ then $F(x)$ is continuous on $[a, b]$, where $F(x)=\int_{a}^{x} f(t) d t$.
5. Suppose that f and g are continuous functions on $[0,1]$ and differentiable on $(0,1)$. Suppose that $f(0)=g(0)$ and that $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \in(a, b)$. Show that $f(x) \leq g(x)$ for all $x \in[0,1]$.
6. Let $E \subseteq \mathbf{R}$ and $f: E \rightarrow \mathbf{R}$.
(a) State the definition: f is uniformly continuous on E.
(b) Let $f(x)$ be uniformly continuous on \mathbf{R}. Prove that

$$
\lim _{t \rightarrow 0}\left\{\sup _{x \in \mathbf{R}}|f(x)-f(x+t)|\right\}=0
$$

7. Show that $\left\{z_{n}\right\}_{n \in \mathbf{N}}$ is Cauchy, where $z_{n}=\int_{n}^{n+1} \frac{\sin t}{1+t} d t$.
8. Let $x_{1}=0$ and $x_{n+1}=\frac{1}{2}+\sin \left(x_{n}\right)$ for all $n>1$. Prove that $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ converges.
