Math 3210 § 2.	A Final & Some Solved Problems	Name:	SAMPLE
Treibergs a		December 1, 2009	

Final Given Dec. 15, 2000. (That course covered Chapter 7 instead of Chapter 5.) (1.) Using only the definition of differentiability and limit theorems, show that $f(x) = \frac{x}{1+x}$ is differentiable at x = 2 and that $f'(2) = \frac{1}{9}$.

- (2.) Let $E = \left\{-\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, \dots\right\} = \left\{\frac{(-1)^n \cdot n}{n+1} : n = 1, 2, 3, \dots\right\}$. Find inf *E*. Prove your answer.
- (3.) Define a sequence by x₁ = 10 and x_{n+1} = 2 + ¹/₃x_n for n ≥ 1. *i.* Show that x_n is decreasing. *ii.* Show that x_n is bounded below. *iii.* Show that x_n → 3 as n → ∞.
- (4.) Let $\{x_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers. *i.* State the definition: $\{x_n\}_{n \in \mathbb{N}}$ is a Cauchy Sequence. *ii.* Show that the sequence $\{y_n\}_{n \in \mathbb{N}}$ is a Cauchy Sequence, where $y_1 = \frac{1}{1}, y_2 = \frac{1}{1} - \frac{1}{1 \cdot 2}, y_3 = \frac{1}{1} - \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3}, \quad y_4 = \frac{1}{1} - \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4}, \dots$ In general, $y_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k!}$. [Hint: You may first wish to prove that $\frac{1}{k!} \leq \frac{1}{2^{k-1}}$.]
- (5.) Let E ⊂ R be a subset, a ∈ E be a point and f : E → R be a function.
 i. State the definitions: f is continuous at a. f is continuous on E.
 ii. Define f(x) = x + ¹/_x. Show directly from the definition that f is continuous on (0,∞).
- (6.) Let $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = \begin{cases} x^2, & \text{if } x \in \mathbf{Q} \ (x \text{ is a rational number},) \\ 0, & \text{if } x \notin \mathbf{Q} \ (x \text{ is not a rational number}.) \end{cases}$ i. Show that f is differentiable at x = 0 and find f'(0). ii. If $a \neq 0$, is f differentiable at a? Why?

(7.) Assume that the function $f : \mathbf{R} \to \mathbf{R}$ is differentiable on \mathbf{R} and satisfies f(x) > 0 for all $x \in \mathbf{R}$. Using only the definition of differentiability and limit theorems (and not the quotient rule for derivatives,) show that the reciprocal $g(x) = \frac{1}{f(x)}$ is differentiable for all $a \in \mathbf{R}$ and that $g'(a) = -\frac{f'(a)}{f(a)^2}$.

(8.) Define a function $f : \mathbf{R} \to \mathbf{R}$ by $f(x) = \frac{x^5 + x^2 - 2x}{x^4 + 1}$. Give an argument if true; give a counterexample if false:

- i. $f : \mathbf{R} \to \mathbf{R}$ is onto.
- ii. $f : \mathbf{R} \to \mathbf{R}$ is one-to-one.
- iii. There is a number $x_0 \in \mathbf{R}$ so that $f'(x_0) = 0$.

(9.) Let $f : \mathbf{R} \to \mathbf{R}$ be a differentiable function. Suppose there is a constant $0 \le M < \infty$ so that $|f'(\xi)| \le M$ for all $\xi \in \mathbf{R}$.

- i. Prove that for all $x, y \in \mathbf{R}$ there holds $|f(x) f(y)| \le M|x y|$.
- ii. Assuming (i.), prove that f is uniformly continuous on \mathbf{R} .

(10.) Define the sequence of functions by $f_n(x) = \frac{1}{n^2} + \frac{x}{n}$. Find $\lim_{n \to \infty} f_n(x)$ and show that the convergence is uniform on [-3,3].

Final Given Dec. 15, 2004. (1.) Let $E = \left\{ \frac{p}{q} : p, q \in \mathbf{N} \right\}$. Find the infimum, $\inf E$. Prove your answer.

(2.) Using only the definition of integrability, prove that f(x) is integrable on [0,1], where

$$f(x) = \begin{cases} 0, & \text{if } x = \frac{1}{3}; \\ 1, & \text{if } x = \frac{2}{3}; \\ 2, & \text{otherwise.} \end{cases}$$

(3.) Let $f:[0,1] \to \mathbf{R}$ be continuous on [0,1] and suppose that f(x) = 0 for each rational number x in [0,1]. Prove that f(x) = 0 for all $x \in [0,1]$.

(4.) Determine whether the statements are true or false. If the statement is true, give the reason. If the statement is false, provide a counterexample.

i. Statement. Let $f : \mathbf{R} \to \mathbf{R}$ be differentiable at a. Then $\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h} = f'(a)$ *ii.* Statement. Let $f : [0,1] \to \mathbf{R}$ be such that |f(x)| is Riemann integrable on [0,1]. Then f(x) is

ii. Statement. Let $f : [0,1] \to \mathbf{R}$ be such that |f(x)| is Riemann integrable on [0,1]. Then f(x) is Riemann Integrable on [0,1].

iii. Statement. If $f : [a,b] \to \mathbf{R}$ is differentiable on [a,b]. Then $F(x) = \int_a^x f(t) dt$ is continuous on [a,b].

(5.) Suppose that f and g are continuous functions on [0,1] and differentiable on (0,1). Suppose that f(0) = g(0) and that $f'(x) \le g'(x)$ for all $x \in (0,1)$. Show that $f(x) \le g(x)$ for all $x \in [0,1]$.

- (6.) Let E ⊆ R and f : E → R.
 i. State the definition: f is uniformly continuous on E.
 ii. Let f(x) be uniformly continuous on R. Prove that lim_{t→0} {sup_{x∈R} |f(x) f(x + t)|} = 0.
- (7.) Show that $\{z_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence, where $z_n = \int_n^{n+1} \frac{\sin t}{1+t} dt$.
- (8.) Let $x_1 = 0$ and $x_{n+1} = \frac{1}{2} + \sin(x_n)$ for all n > 1. Prove that $\{x_n\}_{n \in \mathbb{N}}$ converges.

Some solved problems from the last quarter of the semester (since the last midterm).

(1.) Show that f(x) = [3x] is integrable on [0,1], where [x] is the greatest integer function. What is $\int_0^1 f(x) dx$?

To show f is integrable on [0,1] we need to show that for every $\varepsilon > 0$ there is a partition $P = \{0 = x_0 < x_1 < \cdots < x_n = 1\}$ of [0,1] so that that the upper sum minus the lower sum satisfies $U(f, P) - L(f, P) < \varepsilon$.

Choose $\varepsilon > 0$ and let η be any number such that $0 < \eta < \min\{\varepsilon, 1\}$. Because f(x) = 0 on the interval $[0, \frac{1}{3}), f = 1$ on $[\frac{1}{3}, \frac{2}{3}), f = 2$ on $[\frac{2}{3}, 1)$ and f(1) = 3, we shall choose a partition that has narrow intervals near the jumps of the function. Let

$$P = \left\{ x_0 = 0 < x_1 = \frac{1 - \eta}{3} < x_2 = \frac{1}{3} < x_3 = \frac{2 - \eta}{3} < x_4 = \frac{2}{3} < x_5 = \frac{3 - \eta}{3} < x_6 = 1 \right\}$$

The sups and infs on the intervals are computed as follows

$$M_{1} = \sup_{x \in [x_{0}, x_{1}]} f(x) = \sup_{x \in \left[0, \frac{1-\eta}{3}\right]} 0 = 0, \quad M_{2} = \sup_{x \in \left[\frac{1-\eta}{3}, \frac{1}{3}\right]} f(x) = 1, \quad M_{3} = 1, \quad M_{4} = 2, \quad M_{5} = 2, \quad M_{6} = 3;$$

$$m_{1} = \inf_{x \in [x_{0}, x_{1}]} f(x) = \inf_{x \in \left[0, \frac{1-\eta}{3}\right]} 0 = 0, \quad m_{2} = \inf_{x \in \left[\frac{1-\eta}{3}, \frac{1}{3}\right]} f(x) = 0, \quad m_{3} = 1, \quad m_{4} = 1, \quad m_{5} = 2, \quad m_{6} = 2;$$

Hence, since $M_1 - m_1 = M_3 - m_3 = M_5 - m_5 = 0$, $M_2 - m_2 = M_4 - m_4 = M_6 - m_6 = 1$ and $x_{2j} - x_{2j-1} = \frac{\eta}{3}$,

$$U - L = \sum_{i=1}^{6} (M_i - m_i)(x_i - x_{i-1}) = \frac{\eta}{3} \left[(M_2 - m_2) + (M_4 - m_4) + (M_6 - m_6) \right] = \frac{3\eta}{3} < \varepsilon.$$

Thus f is integrable on [0, 1]. We may compute the upper sum using $x_{2j+1} - x_{2j} = \frac{1-\eta}{3}$

$$U = \sum_{i=1}^{6} M_i(x_i - x_{i-1}) = 0 + 1 \cdot (x_2 - x_1) + 1 \cdot (x_3 - x_2) + 2 \cdot (x_4 - x_3) + 2 \cdot (x_5 - x_4) + 3 \cdot (x_6 - x_5)$$
$$= \frac{\eta}{3} + \frac{1 - \eta}{3} + 2 \cdot \frac{\eta}{3} + 2 \cdot \frac{1 - \eta}{3} + 3 \cdot \frac{\eta}{3} = 1 + \eta$$

Similarly L(f, P) = 1. We deduce the value of the integral from the fact that for integrable functions, for any partition the upper and lower sums bracket the integral. Thus for our partition above,

$$1 = L(f, P) \le \int_0^1 f(x) \, dx \le U(f, P) < 1 + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, $\int_0^1 f(x) dx = 1$.

(2.) Suppose that $f : [-a,a] \to \mathbf{R}$ is integrable and odd $(f(x) = -f(x) \text{ for all } x \in [-a,a].)$ Show that $\int_{-a}^{a} f(x) dx = 0.$

One solution is to use Riemann's point sum to approximate the integral. Since f is integrable, if $I = \int_{-a}^{a} f(x) dx$ then $S(f, P, T) \to I$ as $||P|| \to 0$ (see problem 10). This means that for every $\varepsilon > 0$ there is a partition P_{ε} such that for any refinement $Q \supseteq P_{\varepsilon}$ where $Q = \{-a = x_0 < x_1 < \cdots < x_n = a\}$ and for any choice of sampling points $T = (t_1, t_2, \ldots, t_n)$ where $t_i \in (x_{i-1}, x_i)$, we have that the Riemann Point Sum satisfies $|S(f, Q, T) - I| < \varepsilon$.

Choose any $\varepsilon > 0$ and let P_{ε} be the corresponding partition. Throw in the reflections of all division points of P_{ε} and zero to get a refined symmetric partition $Q = P_{\varepsilon} \cup (-P_{\varepsilon}) \cup \{0\}$, where $-P_{\varepsilon} = \{-t : t \in P_{\varepsilon}\}$. (So Q = -Q.) Hence we may use an unusual numbering with 2n intervals for Q so that $x_{-i} = -x_i$,

$$Q = \{ -a = x_{-n} < x_{1-n} < \dots < x_{-1} < x_0 = 0 < x_1 < \dots < x_n = a \}.$$

We also choose symmetric sample points $T = (t_{1-n}, t_{2-n}, \ldots, t_n)$ where $t_i \in (x_{i-1}, x_i)$ and $t_{1-j} = -t_j \in$ (x_{-i}, x_{1-i}) for $i, j = 1, \ldots, n$. Now since f is odd, this implies that $f(t_{1-k}) = -f(t_k)$ for all k. Thus after changing dummy index j = 1 - k, the Riemann sum is

$$S(f,Q,T) = \sum_{j=1-n}^{n} f(t_j)(x_j - x_{j-1})$$

=
$$\sum_{j=1-n}^{0} f(t_j)(x_j - x_{j-1}) + \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1})$$

=
$$\sum_{k=1}^{n} f(t_{1-k})(x_{1-k} - x_{-k}) + \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1})$$

=
$$\sum_{k=1}^{n} -f(t_k)(-x_{k-1} + x_k) + \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1})$$

=
$$0.$$

Thus we have shown that for all $\varepsilon > 0$, $|0 - I| = |S(f, Q, T) - I| < \varepsilon$ so I = 0. Another method is to split the integral as the sum $I = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$ and then change variables $x = \varphi(\xi) = -\xi$ in the first integral $\int_{-a}^{0} f(x) dx = \int_{a}^{0} f(\varphi(\xi)) \varphi'(\xi) d\xi = -\int_{a}^{0} f(-\xi) d\xi = -\int_{0}^{a} f(\xi) d\xi$ which cancels the second integral.

(3.) Suppose a < b, 0 < k and $f : [a, b] \to \mathbf{R}$ is an integrable function such that f(x) > k for all $x \in [a, b]$. Show that $h(x) = \frac{1}{f(x)}$ is integrable on [a, b].

We are to show that $\frac{1}{f}$ is bounded and for every $\varepsilon > 0$ there is a partition P such that the upper sum minus the lower sum $U(\frac{{\rm i}}{f},P)-L(\frac{1}{f},P)<\varepsilon.$

As f is integrable, it is bounded: there is $M \in \mathbf{R}$ so that $k \leq f(x) \leq M$ for all $x \in [a, b]$. But as k > 0we conclude that $\frac{1}{M} \leq \frac{1}{f(x)} \leq \frac{1}{k}$ for all $x \in [a, b]$, thus $\frac{1}{f}$ is bounded.

Choose $\varepsilon > 0$. As f is integrable, there is a partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ so that $U(f, P) - L(f, P) < k^2 \varepsilon$. Consider the sup and inf over each of the subintervals

$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x), \qquad M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$$

Since $k \leq m_i \leq f(x) \leq M_i$ for $x \in [x_{i-1}, x_i]$, sup and inf for $\frac{1}{f}$ satisfy on this interval

$$\frac{1}{M_i} \le \frac{1}{f(x)} \le \frac{1}{m_i} \implies \frac{1}{M_i} \le m'_i = \inf_{x \in [x_{i-1}, x_i]} \frac{1}{f(x)}, \qquad M'_i = \sup_{x \in [x_{i-1}, x_i]} \frac{1}{f(x)} \le \frac{1}{m_i}$$

Thus estimating the upper and lower sums for $\frac{1}{t}$, since all $(x_i - x_{i-1}) \ge 0$,

$$U\left(\frac{1}{f}, P\right) - L\left(\frac{1}{f}, P\right) = \sum_{j=1}^{n} (M'_{i} - m'_{i})(x_{i} - x_{i-1})$$

$$\leq \sum_{j=1}^{n} \left(\frac{1}{m_{i}} - \frac{1}{M_{i}}\right)(x_{i} - x_{i-1})$$

$$= \sum_{j=1}^{n} \frac{(M_{i} - m_{i})}{m_{i}M_{i}}(x_{i} - x_{i-1})$$

$$\leq \sum_{j=1}^{n} \frac{(M_{i} - m_{i})}{k^{2}}(x_{i} - x_{i-1})$$

$$= \frac{1}{k^{2}}(U(f, P) - L(f, P)) < \frac{k^{2}\varepsilon}{k^{2}} = \varepsilon.$$

(4.) Suppose that $f, g: \mathbf{R} \to \mathbf{R}$ are differentiable functions such that $g(x) \neq 0$ and $g'(x) \neq 0$ for all $x \neq 0$. Suppose that $\lim_{x \to 0} f(x) = 0$, $\lim_{x \to 0} g(x) = 0$ and $\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \pi$. Show that $\lim_{x \to 0} \frac{f(x)}{g(x)} = \pi$. This is just a particular case of l'Hôpital's Rule. So we may follow Proof (4.18). First notice that

This is just a particular case of l'Hôpital's Rule. So we may follow Proof (4.18). First notice that $g(x) - g(0) \neq 0$ and $g'(x) \neq 0$ if $x \neq 0$, so we may divide by them. By the sequential characterization of limits, it suffices to show that $\lim_{k\to\infty} \frac{f(x_i)}{g(x_i)} = \pi$ for every sequence $\{x_i\}_{i\in\mathbb{N}}$ such that $x_i \neq 0$ for all i and $x_i \to 0$ as $i \to \infty$. Similarly by the equivalence of the existence of a limit to the existence of equal left and right limits, we may assume $x_i > 0$ for all i or $x_i < 0$ for all i. As f and g are continuous at 0, we have f(0) = g(0) = 0. We may suppose that $0 < x_i$ for all i. Now, since f is assumed to be continuous on $[0, x_i]$ and differentiable on $(0, x_i)$ (actually we assumed more,) by the Generalized Mean Value Theorem there is a $c_i \in (0, x_i)$ so that

$$\frac{f(x_i)}{g(x_i)} = \frac{f(x_i) - f(0)}{g(x_i) - g(0)} = \frac{f'(c_i)}{g'(c_i)} \to \pi \quad \text{as } i \to \infty.$$

Now, letting $i \to \infty$, we have $x_i \to 0$. Since $0 < c_i < x_i$, by the Squeeze Theorem, $c_i \to 0$, so the conclusion follows since the sequential characterization implies $\lim_{i\to\infty} \frac{f'(c_i)}{g'(c_i)} = \pi$. A similar argument on the left side gives the same conclusion.

(5.) Let f be continuous on [a,b] and that $\int_a^x f(t) dt = \int_x^b f(t) dt$ for all $x \in [a,b]$. Then f(x) = 0 for all $x \in [a,b]$.

Observe that if $x \in [a, b]$ then

$$\int_{a}^{x} f(t) dt = \int_{x}^{b} f(t) dt = \int_{a}^{b} f(t) dt - \int_{a}^{x} f(t) dt \implies \int_{a}^{x} f(t) dt = \frac{1}{2} \int_{a}^{b} f(t) dt = \text{const}$$

Thus, since f is continuous, by the Fundamental Theorem of Calculus, for all $x \in [a, b]$, the primitive function is differentiable and equals

$$f(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = \frac{d}{dx} \text{const.} = 0.$$

(6.) Let $f(x) = x + x^3 + x^5$. Show f has a continuous inverse function $f^{-1} : \mathbf{R} \to \mathbf{R}$. Find $(f^{-1})'(3)$ if possible.

First observe that since f is a polynomial, it is differentiable on **R**. Second, observe that f is strictly increasing on **R**. (This is like Theorem 4.24.) To see this, choose any numbers a < b and since f is

continuous on [a, b] and differentiable on (a, b), by the Mean Value Theorem there is a $c \in (a, b)$ so that f(b) - f(a) = f'(c)(b - a). However $f'(c) = 1 + 3c^2 + 5c^4 > 0$, so this implies f(b) > f(a). Third we apply the Inverse Function Theorem 4.26. As f is strictly increasing (so one to one,) and continuous on \mathbf{R} , there is a continuous, strictly increasing inverse function on $f(\mathbf{R}) = \mathbf{R}$ (since f is not bounded above and not bounded below.) By Theorem 4.27, since f is one to one, continuous and differentiable at x_0 where $f'(x_0) = 1 + 3x_0^2 + 5x_0^4 \neq 0$, the inverse function is differentiable. If $f(x_0) = y_0$ (for example f(1) = 3) then

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} \implies (f^{-1})'(3) = \frac{1}{f'(1)} = \frac{1}{1+3(1^2)+5(1^4)} = \frac{1}{9}.$$

(7.) Suppose that x > -1. Show that $\frac{1}{\sqrt{1+x}} \ge 1 - \frac{x}{2}$.

This is an application of the Mean Value Theorem. Let $h(x) = (1+x)^{-1/2} - 1 + \frac{1}{2}x$. This function is differentiable for x > -1. Also notice that h(0) = 0. Then for any x > 0 there is a $c \in (0, x)$ so that h(x) = h(x) - h(0) = h'(c)(x - 0). But $h'(c) = \frac{1}{2}(1 - (1 + c)^{-3/2}) > 0$ for c > 0 because $(1 + c)^{-3/2} < 1$. Hence h(x) > 0. Similarly, if -1 < x < 0 then there is a $c \in (x, 0)$ so that -h(x) = h(0) - h(x) = h'(c)(0 - x). This time h'(c) < 0 because $(1 + c)^{-3/2} > 0$. Hence also h(x) > 0. Putting inequalities on the two intervals and at zero together, $h(x) \ge 0$ for all x > -1.

(8.) Calculate $\lim_{h \to 0} \frac{1}{h} \int_{3}^{3+h} e^{t^2} dt$.

Let $F(x) = \int_0^x e^{t^2} dt$. Since $f(t) = e^{t^2}$ is continuous as it is the composition of continuous functions, F(x) is differentiable and F' = f, by the Fundamental Theorem of Calculus. The limit becomes the limit of a difference quotient

$$\lim_{h \to 0} \frac{1}{h} \int_{3}^{3+h} e^{t^2} dt = \lim_{h \to 0} \frac{F(3+h) - F(3)}{h} = F'(3) = f(3) = e^9.$$

(9.) Suppose $g: \mathbf{R} \to \mathbf{R}$ is a continuous function. Find $\frac{d}{dt} \int_0^t g(x-t) \, dx$.

We do not yet have the machinery to pass derivatives through integrals. Therefore we shall change variables in the integral to put the dependence on t in the limits of integration. To that end, choose t and x_0 so that $x_0 < -|t|$. Let $F(t) = \int_{x_0}^t g(\xi) d\xi$. Since t is constant as far as the integration is concerned, change variables according to $\mathbf{x}=\varphi(\xi)=\xi+t$. Then since φ is continuously differentiable on **R**, and g is continuous on $\varphi(\mathbf{R}) = \mathbf{R}$, we have by the change of variables formula,

$$\int_0^t g(x-t) \, dx = \int_{\varphi(-t)}^{\varphi(0)} g(x-t) \, dx = \int_{-t}^0 g(\varphi(\xi) - t) \varphi'(\xi) \, d\xi = \int_{-t}^0 g(\xi) \cdot 1 \, d\xi = F(0) - F(-t) \cdot \frac{1}{2} \int_{-t}^0 g(\xi) \, d\xi = \int_{-t}^0 g(\xi) \, d\xi =$$

Since g is continuous on **R**, by the Fundamental Theorem of Calculus, F is differentiable and $F'(\xi) = g(\xi)$. Now, by the chain rule,

$$\frac{d}{dt} \int_0^t g(x-t) \, dx = \frac{d}{dt} \left(F(0) - F(-t) \right) = 0 - F'(-t) \cdot (-1) = g(-t).$$

(10.) Let $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ be a partition of [a, b]. The mesh $||P|| = \max\{x_i - x_{i-1} : i = 1, \ldots, n\}$ is the length of the largest subinterval. Let $f : [a, b] \to \mathbf{R}$ be a bounded function. Show that f is integrable on [a, b] if and only if

(†) For all $\varepsilon > 0$ there is $\delta > 0$ so that $U(f, P) - L(f, P) < \epsilon$ whenever $||P|| < \delta$. You may use the theorem that f is integrable on [a, b] if and only if (‡.) For all $\varepsilon > 0$ there is a partition P so that $U(f, P) - L(f, P) < \epsilon$.

(†.) \implies (‡.): Choose ϵ and let δ be given by (†). Then any partition such that $||P|| < \delta$ works: $U(f,P) - L(f,P) < \epsilon$ for that P. Such a partition may be taken to be the one with equal subinternals, namely, $P = P_n = \{x_i\}_{i=1,...,n}$ where $x_i = a + \frac{i}{n}(b-a)$.

 $(\ddagger) \implies (\dagger)$: Choose $\epsilon > 0$. By (\ddagger) , there is a partition $Q = \{a = y_1 < y_2 < \cdots < y_m = b\}$ such that $U(f,Q) - L(f,Q) < \frac{\varepsilon}{2}$. The idea is to choose the mesh size δ much finer than Q so that only a few subintervals of a partition $P = \{a = x_i < x_2 < \cdots < x_n = b\}$ such that $||P|| < \delta$ straddle the y_i 's. Let $\eta = \min\{y_i - y_{i-1} : i = 1, \dots, m\}$ be the size of the smallest interval in Q. Since f is bounded there is $K < \infty$ so that |f(x)| < K for all $x \in [a, b]$. Let $\delta = \min\left\{\frac{\eta}{2}, \frac{\varepsilon}{4mK}\right\}$ and P any partition of [a, b] such that $\|P\| < \delta.$

Let $M_i = \sup_{[x_{i-1}, x_i]} f$, $m_i = \inf_{[x_{i-1}, x_i]} f$, $M'_j = \sup_{[y_{j-1}, y_j]} f$ and $m'_j = \inf_{[y_{i-1}, y_i]} f$. Note that if $[x_{i-1}, x_i] \subset [y_{j-1}, y_j]$ then $M_i - m_i \le M'_j - m'_j$. And always we have $M_i - m_i \le 2K$.

Split the sum into the sum over those subintervals $[x_{i-1}, x_i] \subset [y_{j-1}, y_j]$ and the sum over those few i's with $y_j \in (x_{i-1}, x_i)$ when y_j are not in P. Since $||P|| < \eta$, no two y_j 's are ever in the same subinterval $[x_{i-1}, x_i].$

$$\begin{aligned} U(f,P) - L(f,P) &= \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1}) \\ &= \sum_{j=1}^{m} \left(\sum_{[x_{i-1}, x_{i}] \subset [y_{j-1}, y_{j}]} (M_{i} - m_{i})(x_{i} - x_{i-1}) + \sum_{y_{j} \in (x_{i-1}, x_{i})} (M_{i} - m_{i})(x_{i} - x_{i-1}) \right) \\ &\leq \sum_{j=1}^{m} \left(\sum_{[x_{i-1}, x_{i}] \subset [y_{j-1}, y_{j}]} (M'_{j} - m'_{j})(x_{i} - x_{i-1}) + \sum_{y_{j} \in (x_{i-1}, x_{i})} 2K\delta \right) \\ &\leq \sum_{j=1}^{m} (M'_{j} - m'_{j})(y_{j} - y_{j-1}) + 2Km\delta = U(f,Q) - L(f,Q) + 2Km\delta < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

(11.) Suppose $f, f_n : [a, b] \to \mathbf{R}$ are functions such that f_n is integrable and $f_n \to f$ uniformly on [a, b]. Then f is integrable on [a, b] and

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx.$$

We show f is bounded and that for every $\varepsilon > 0$ there is a partition P of [a, b] such that U(f, P) - L(f, P) < 0 ε , hence f is integrable. The idea is similar to proving that the uniform limit of continuous functions is continuous, namely, to approximate the limit f by an f_n with large enough n. Choose $0 < \varepsilon < 5(b-a)$. By uniform convergence, there is $R \in \mathbf{R}$ so that $|f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)}$ whenever n > R and $x \in [a, b]$. Choose $n \in \mathbb{N}$ so that n > R. Since f_n is integrable it is bounded: for some $K_n < \infty$, $|f_n(x)| < K_n$ for all $x \in [a, b]$. Thus by uniform convergence, $|f(x)| = |f(x) - f_n(x) + f_n(x)| \le |f(x) - f_n(x)| + |f_n(x)| \le |f(x) - f_n(x)| \le |f(x)$ $\frac{\varepsilon}{5(b-a)} + K_n \leq 1 + K_n$ since $\varepsilon < 5(b-a)$, hence f is bounded. Since f_n is integrable, there is a partition $P = \{a = x_0 < x_1 < \cdots < x_m = b\}$ so that $U(f_n, P) - L(f_n, P) < \frac{\varepsilon}{2}$. We use the same partition for f. Let $M_i = \sup_{[x_{i-1}, x_i]} f_n$, $m_i = \inf_{[x_{i-1}, x_i]} f_n$. By uniform continuity, for $x \in [x_{i-1}, x_i]$,

$$m_i - \frac{\varepsilon}{5(b-a)} < f_n(x) - |f_n(x) - f(x)| \le f(x) \le f_n(x) + |f(x) - f_n(x)| < M_i + \frac{\varepsilon}{5(b-a)}$$

Let $M'_i = \sup_{[x_{i-1}, x_i]} f$ and $m'_i = \inf_{[x_{i-1}, x_i]} f$. Thus $M'_i \le M_i + \frac{\varepsilon}{5(b-a)}$ and $m'_i \ge m_i - \frac{\varepsilon}{5(b-a)}$. Estimating,

$$U(f,P) - L(f,P) = \sum_{i=1}^{m} (M'_i - m'_i)(x_i - x_{i-1})$$

$$\leq \sum_{i=1}^{m} \left(M_i + \frac{\varepsilon}{5(b-a)} - m_i + \frac{\varepsilon}{5(b-a)} \right) (x_i - x_{i-1})$$

$$= U(f_n, P) - L(f_n, P) + \frac{2\varepsilon}{5(b-a)} \sum_{i=1}^{m} (x_i - x_{i-1})$$

$$\leq \frac{\varepsilon}{2} + \frac{2\varepsilon(b-a)}{5(b-a)} < \varepsilon.$$

So f is integrable on [a, b]. By uniform convergence, for all n > R and all $x \in [a, b]$, $|f_n(x) - f(x)| < \frac{\varepsilon}{5(b-a)}$ implies

$$\left| \int_{a}^{b} f_{n}(x) \, dx - \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| \, dx \leq \int_{a}^{b} \frac{\varepsilon}{5(b-a)} \, dx = \frac{\varepsilon(b-a)}{5(b-a)} < \varepsilon.$$

As ε was arbitrary, this implies (**X**).

(12.) Let p > 0. Show that the improper integral of $f(x) = \frac{\cos x}{(\ln x)^p}$ exists on (e, ∞) .

Since f is continuous, on each interval [e, R] the function f is integrable. The improper integral $\int_e^{\infty} f(x) dx$ exists provided $\lim_{R \to \infty} \int_e^R f(x) dx$ exists as a finite number.

The idea is to split the integral $I(R) = \int_e^R f(x) dx$ into three parts, each of which converges as $R \to \infty$. Let $\alpha = \frac{7\pi}{2} > e$, $\beta(R) = 2\pi k(R) + \frac{3\pi}{2}$ where $k(R) \in \mathbb{N}$ such that $2\pi k(R) + \frac{3\pi}{2} \leq R < 2\pi k(R) + \frac{7\pi}{2}$ for $R > \frac{11\pi}{2}$, $I_1 = \int_e^\alpha f(x) dx$, $I_2 = \int_\alpha^{\beta(R)} f(x) dx$ and $I_3 = \int_{\beta(R)}^R f(x) dx$. Then $I(R) = I_1 + I_2 + I_3$. I_1 is constant for all R. Since $(\ln x)^p$ is increasing for $x \geq e$ and tends to infinity as $x \to \infty$, and $\beta(R) \to \infty$ as $R \to \infty$,

$$|I_3(R)| \le \int_{\beta(R)}^R \frac{|\cos x|}{(\ln x)^p} \, dx \le \int_{\beta(R)}^R \frac{dx}{(\ln \beta(R))^p} = \frac{R - \beta(R)}{(\ln \beta(R))^p} \le \frac{2\pi}{(\ln \beta(R))^p} \to 0 \text{ as } R \to \infty.$$

Finally, since $\cos(x) = -\cos(x + \pi)$,

$$I_2 = \sum_{j=2}^{k(R)+1} \int_{2\pi j - \frac{\pi}{2}}^{2\pi j + \frac{3\pi}{2}} \frac{\cos x \, dx}{(\ln x)^p} = \sum_{j=2}^{k(R)+1} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{[\ln(2\pi j + x)]^p} - \frac{1}{[\ln(2\pi j + \pi + x)]^p} \right) \cos x \, dx.$$

 $I_2(k(R))$ converges as $R \to \infty$ if and only if $I_2(k)$ converges as $k \to \infty$. But the parenthesis term and $\cos x$ are both positive, so that $I_2(k)$ is an increasing sequence in k, and hence converges if and only if it is bounded. But using $\cos x \leq 1$ and $(\ln s)^p$ is increasing,

$$I_2 \le \pi \sum_{j=2}^{k(R)+1} \left(\frac{1}{[\ln(2\pi j - \frac{\pi}{2})]^p} - \frac{1}{[\ln(2\pi j + \frac{3\pi}{2})]^p} \right) = \frac{\pi}{[\ln(\frac{7\pi}{2})]^p} - \frac{\pi}{[\ln(2\pi k(R) + \frac{7\pi}{2})]^p} \le \frac{\pi}{[\ln(\frac{7\pi}{2})]^p}$$

since the sum telescopes.

(13.) Evaluate the improper integral $\mathcal{I} = \int_0^{\pi/2} \frac{\cos x}{(\sin x)^{1/3}} dx$, if it exists. The function is continuous on $(0, \pi/2]$ so it is integrable on every interval $[\varepsilon, \pi/2]$ where $0 < \varepsilon < \pi/2$. Thus the improper integral exists if $\lim_{\varepsilon \to 0+} \int_{\varepsilon}^{\pi/2} \frac{\cos x}{(\sin x)^{1/3}} dx$ has a finite limit. But changing variables $u = \varphi(x) = \sin x,$

$$\int_{\varepsilon}^{\pi/2} \frac{\cos x \, dx}{(\sin x)^{1/3}} = \int_{\varepsilon}^{\pi/2} \frac{\varphi'(x) \, dx}{(\varphi(x))^{1/3}} = \int_{\sin \varepsilon}^{1} \frac{du}{u^{1/3}} = \left. \frac{3}{2} u^{2/3} \right|_{u=\sin \varepsilon}^{1} = \frac{3}{2} \left(1^{2/3} - (\sin \varepsilon)^{2/3} \right) \to \frac{3}{2}$$

as $\varepsilon \to 0+$, so the improper integral exists and $\mathcal{I} = 3/2$.