Math 3210 § 2.
Treibergs $a t$

A Final \& Some Solved Problems

Final Given Dec. 15, 2000. (That course covered Chapter 7 instead of Chapter 5.)
(1.) Using only the definition of differentiability and limit theorems, show that $f(x)=\frac{x}{1+x}$ is differentiable at $x=2$ and that $f^{\prime}(2)=\frac{1}{9}$.
(2.) Let $E=\left\{-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \frac{4}{5}, \ldots\right\}=\left\{\frac{(-1)^{n} \cdot n}{n+1}: n=1,2,3, \ldots\right\}$. Find $\inf E$. Prove your answer.
(3.) Define a sequence by $x_{1}=10$ and $x_{n+1}=2+\frac{1}{3} x_{n}$ for $n \geq 1$.
i. Show that x_{n} is decreasing.
ii. Show that x_{n} is bounded below.
iii. Show that $x_{n} \rightarrow 3$ as $n \rightarrow \infty$.
(4.) Let $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ be a seqence of real numbers.
i. State the definition: $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ is a Cauchy Sequence.
ii. Show that the sequence $\left\{y_{n}\right\}_{n \in \mathbf{N}}$ is a Cauchy Sequence, where
$y_{1}=\frac{1}{1}, y_{2}=\frac{1}{1}-\frac{1}{1 \cdot 2}, y_{3}=\frac{1}{1}-\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}, \quad y_{4}=\frac{1}{1}-\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}-\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}, \ldots$ In general, $y_{n}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!}$.
[Hint: You may first wish to prove that $\frac{1}{k!} \leq \frac{1}{2^{k-1}}$.]
(5.) Let $E \subset \mathbf{R}$ be a subset, $a \in E$ be a point and $f: E \rightarrow \mathbf{R}$ be a function.
i. State the definitions: f is continuous at a. f is continuous on E.
ii. Define $f(x)=x+\frac{1}{x}$. Show directly from the definition that f is continuous on $(0, \infty)$.
(6.) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)= \begin{cases}x^{2}, & \text { if } x \in \mathbf{Q} \text { (} x \text { is a rational number, }) \\ 0, & \text { if } x \notin \mathbf{Q} \text { (} x \text { is not a rational number.) }\end{cases}$
i. Show that f is differentiable at $x=0$ and find $f^{\prime}(0)$.
ii. If $a \neq 0$, is f differentiable at a ? Why?
(7.) Assume that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable on \mathbf{R} and satisfies $f(x)>0$ for all $x \in \mathbf{R}$. Using only the definition of differentiability and limit theorems (and not the quotient rule for derivatives,) show that the reciprocal $g(x)=\frac{1}{f(x)}$ is differentiable for all $a \in \mathbf{R}$ and that $g^{\prime}(a)=-\frac{f^{\prime}(a)}{f(a)^{2}}$.
(8.) Define a function $f: \mathbf{R} \rightarrow \mathbf{R}$ by $f(x)=\frac{x^{5}+x^{2}-2 x}{x^{4}+1}$. Give an argument if true; give a counterexample if false:
i. $f: \mathbf{R} \rightarrow \mathbf{R}$ is onto.
ii. $f: \mathbf{R} \rightarrow \mathbf{R}$ is one-to-one.
iii. There is a number $x_{0} \in \mathbf{R}$ so that $f^{\prime}\left(x_{0}\right)=0$.
(9.) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a differentiable function. Suppose there is a constant $0 \leq M<\infty$ so that $\left|f^{\prime}(\xi)\right| \leq M$ for all $\xi \in \mathbf{R}$.
i. Prove that for all $x, y \in \mathbf{R}$ there holds $|f(x)-f(y)| \leq M|x-y|$.
ii. Assuming (i.), prove that f is uniformly continuous on \mathbf{R}.
(10.) Define the sequence of functions by $f_{n}(x)=\frac{1}{n^{2}}+\frac{x}{n}$. Find $\lim _{n \rightarrow \infty} f_{n}(x)$ and show that the convergence is uniform on $[-3,3]$.
2. Math 3210 § 2. Final Exam Name:

Final Given Dec. 15, 2004.
(1.) Let $E=\left\{\frac{p}{q}: p, q \in \mathbf{N}\right\}$. Find the infimum, inf E. Prove your answer.
(2.) Using only the definition of integrability, prove that $f(x)$ is integrable on $[0,1]$, where

$$
f(x)= \begin{cases}0, & \text { if } x=\frac{1}{3} \\ 1, & \text { if } x=\frac{2}{3} \\ 2, & \text { otherwise }\end{cases}
$$

(3.) Let $f:[0,1] \rightarrow \mathbf{R}$ be continuous on $[0,1]$ and suppose that $f(x)=0$ for each rational number x in $[0,1]$. Prove that $f(x)=0$ for all $x \in[0,1]$.
(4.) Determine whether the statements are true or false. If the statement is true, give the reason. If the statement is false, provide a counterexample.
i. Statement. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be differentiable at a. Then $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}=f^{\prime}(a)$
ii. Statement. Let $f:[0,1] \rightarrow \mathbf{R}$ be such that $|f(x)|$ is Riemann integrable on $[0,1]$. Then $f(x)$ is Riemann Integrable on $[0,1]$.
iii. Statement. If $f:[a, b] \rightarrow \mathbf{R}$ is differentiable on $[a, b]$. Then $F(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$.
(5.) Suppose that f and g are continuous functions on $[0,1]$ and differentiable on $(0,1)$. Suppose that $f(0)=g(0)$ and that $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \in(0,1)$. Show that $f(x) \leq g(x)$ for all $x \in[0,1]$.
(6.) Let $E \subseteq \mathbf{R}$ and $f: E \rightarrow \mathbf{R}$.
i. State the definition: f is uniformly continuous on E.
ii. Let $f(x)$ be uniformly continuous on \mathbf{R}. Prove that $\lim _{t \rightarrow 0}\left\{\sup _{x \in \mathbf{R}}|f(x)-f(x+t)|\right\}=0$.
(7.) Show that $\left\{z_{n}\right\}_{n \in \mathbf{N}}$ is a Cauchy sequence, where $z_{n}=\int_{n}^{n+1} \frac{\sin t}{1+t} d t$.
(8.) Let $x_{1}=0$ and $x_{n+1}=\frac{1}{2}+\sin \left(x_{n}\right)$ for all $n>1$. Prove that $\left\{x_{n}\right\}_{n \in \mathbf{N}}$ converges.

Some solved problems from the last quarter of the semester (since the last midterm).

(1.) Show that $f(x)=[3 x]$ is integrable on $[0,1]$, where $[x]$ is the greatest integer function. What is $\int_{0}^{1} f(x) d x$?

To show f is integrable on $[0,1]$ we need to show that for every $\varepsilon>0$ there is a partition $P=\left\{0=x_{0}<\right.$ $\left.x_{1}<\cdots<x_{n}=1\right\}$ of $[0,1]$ so that that the upper sum minus the lower sum satisfies $U(f, P)-L(f, P)<\varepsilon$.

Choose $\varepsilon>0$ and let η be any number such that $0<\eta<\min \{\varepsilon, 1\}$. Because $f(x)=0$ on the interval $\left[0, \frac{1}{3}\right), f=1$ on $\left[\frac{1}{3}, \frac{2}{3}\right), f=2$ on $\left[\frac{2}{3}, 1\right)$ and $f(1)=3$, we shall choose a partition that has narrow intervals near the jumps of the function. Let

$$
P=\left\{x_{0}=0<x_{1}=\frac{1-\eta}{3}<x_{2}=\frac{1}{3}<x_{3}=\frac{2-\eta}{3}<x_{4}=\frac{2}{3}<x_{5}=\frac{3-\eta}{3}<x_{6}=1\right\}
$$

The sups and infs on the intervals are computed as follows

$$
\begin{gathered}
M_{1}=\sup _{x \in\left[x_{0}, x_{1}\right]} f(x)=\sup _{x \in\left[0, \frac{1-\eta}{3}\right]} 0=0, \quad M_{2}=\sup _{x \in\left[\frac{1-\eta}{3}, \frac{1}{3}\right]} f(x)=1, M_{3}=1, M_{4}=2, M_{5}=2, M_{6}=3 \\
m_{1}=\inf _{x \in\left[x_{0}, x_{1}\right]} f(x)=\inf _{x \in\left[0, \frac{1-\eta}{3}\right]} 0=0, \quad m_{2}=\inf _{x \in\left[\frac{1-\eta}{3}, \frac{1}{3}\right]} f(x)=0, m_{3}=1, m_{4}=1, m_{5}=2, m_{6}=2
\end{gathered}
$$

Hence, since $M_{1}-m_{1}=M_{3}-m_{3}=M_{5}-m_{5}=0, M_{2}-m_{2}=M_{4}-m_{4}=M_{6}-m_{6}=1$ and $x_{2 j}-x_{2 j-1}=\frac{\eta}{3}$,

$$
U-L=\sum_{i=1}^{6}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)=\frac{\eta}{3}\left[\left(M_{2}-m_{2}\right)+\left(M_{4}-m_{4}\right)+\left(M_{6}-m_{6}\right)\right]=\frac{3 \eta}{3}<\varepsilon
$$

Thus f is integrable on $[0,1]$. We may compute the upper sum using $x_{2 j+1}-x_{2 j}=\frac{1-\eta}{3}$

$$
\begin{aligned}
U=\sum_{i=1}^{6} M_{i}\left(x_{i}-x_{i-1}\right)=0 & +1 \cdot\left(x_{2}-x_{1}\right)+1 \cdot\left(x_{3}-x_{2}\right)+2 \cdot\left(x_{4}-x_{3}\right)+2 \cdot\left(x_{5}-x_{4}\right)+3 \cdot\left(x_{6}-x_{5}\right) \\
& =\frac{\eta}{3}+\frac{1-\eta}{3}+2 \cdot \frac{\eta}{3}+2 \cdot \frac{1-\eta}{3}+3 \cdot \frac{\eta}{3}=1+\eta
\end{aligned}
$$

Similarly $L(f, P)=1$. We deduce the value of the integral from the fact that for integrable functions, for any partition the upper and lower sums bracket the integral. Thus for our partition above,

$$
1=L(f, P) \leq \int_{0}^{1} f(x) d x \leq U(f, P)<1+\varepsilon
$$

Since $\varepsilon>0$ was arbitrary, $\int_{0}^{1} f(x) d x=1$.
(2.) Suppose that $f:[-a, a] \rightarrow \mathbf{R}$ is integrable and odd $(f(x)=-f(x)$ for all $x \in[-a, a]$.) Show that $\int_{-a}^{a} f(x) d x=0$.

One solution is to use Riemann's point sum to approximate the integral. Since f is integrable, if $I=$ $\int_{-a}^{a} f(x) d x$ then $S(f, P, T) \rightarrow I$ as $\|P\| \rightarrow 0$ (see problem 10). This means that for every $\varepsilon>0$ there is a partition P_{ε} such that for any refinement $Q \supseteq P_{\varepsilon}$ where $Q=\left\{-a=x_{0}<x_{1}<\cdots<x_{n}=a\right\}$ and for any choice of sampling points $T=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where $t_{i} \in\left(x_{i-1}, x_{i}\right)$, we have that the Riemann Point Sum satisfies $|S(f, Q, T)-I|<\varepsilon$.
4. Math 3210 § 2. Final Exam Name:

Choose any $\varepsilon>0$ and let P_{ε} be the corresponding partition. Throw in the reflections of all division points of P_{ε} and zero to get a refined symmetric partition $Q=P_{\varepsilon} \cup\left(-P_{\varepsilon}\right) \cup\{0\}$, where $-P_{\varepsilon}=\left\{-t: t \in P_{\varepsilon}\right\}$. (So $Q=-Q$.) Hence we may use an unusual numbering with $2 n$ intervals for Q so that $x_{-i}=-x_{i}$,

$$
Q=\left\{-a=x_{-n}<x_{1-n}<\cdots<x_{-1}<x_{0}=0<x_{1}<\cdots<x_{n}=a\right\} .
$$

We also choose symmetric sample points $T=\left(t_{1-n}, t_{2-n}, \ldots, t_{n}\right)$ where $t_{i} \in\left(x_{i-1}, x_{i}\right)$ and $t_{1-j}=-t_{j} \in$ $\left(x_{-j}, x_{1-j}\right)$ for $i, j=1, \ldots, n$. Now since f is odd, this implies that $f\left(t_{1-k}\right)=-f\left(t_{k}\right)$ for all k. Thus after changing dummy index $j=1-k$, the Riemann sum is

$$
\begin{aligned}
S(f, Q, T) & =\sum_{j=1-n}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) \\
& =\sum_{j=1-n}^{0} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)+\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) \\
& =\sum_{k=1}^{n} f\left(t_{1-k}\right)\left(x_{1-k}-x_{-k}\right)+\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) \\
& =\sum_{k=1}^{n}-f\left(t_{k}\right)\left(-x_{k-1}+x_{k}\right)+\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) \\
& =0 .
\end{aligned}
$$

Thus we have shown that for all $\varepsilon>0,|0-I|=|S(f, Q, T)-I|<\varepsilon$ so $I=0$.
Another method is to split the integral as the sum $I=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x$ and then change variables $x=\varphi(\xi)=-\xi$ in the first integral $\int_{-a}^{0} f(x) d x=\int_{a}^{0} f(\varphi(\xi)) \varphi^{\prime}(\xi) d \xi=-\int_{a}^{0} f(-\xi) d \xi=-\int_{0}^{a} f(\xi) d \xi$ which cancels the second integral.
(3.) Suppose $a<b, 0<k$ and $f:[a, b] \rightarrow \mathbf{R}$ is an integrable function such that $f(x)>k$ for all $x \in[a, b]$. Show that $h(x)=\frac{1}{f(x)}$ is integrable on $[a, b]$.

We are to show that $\frac{1}{f}$ is bounded and for every $\varepsilon>0$ there is a partition P such that the upper sum minus the lower sum $U\left(\frac{1}{f}, P\right)-L\left(\frac{1}{f}, P\right)<\varepsilon$.

As f is integrable, it is bounded: there is $M \in \mathbf{R}$ so that, $k \leq f(x) \leq M$ for all $x \in[a, b]$. But as $k>0$ we conclude that $\frac{1}{M} \leq \frac{1}{f(x)} \leq \frac{1}{k}$ for all $x \in[a, b]$, thus $\frac{1}{f}$ is bounded.

Choose $\varepsilon>0$. As f is integrable, there is a partition $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ so that $U(f, P)-L(f, P)<k^{2} \varepsilon$. Consider the sup and inf over each of the subintervals

$$
m_{i}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x), \quad M_{i}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x) .
$$

Since $k \leq m_{i} \leq f(x) \leq M_{i}$ for $x \in\left[x_{i-1}, x_{i}\right]$, sup and inf for $\frac{1}{f}$ satisfy on this interval

$$
\frac{1}{M_{i}} \leq \frac{1}{f(x)} \leq \frac{1}{m_{i}} \quad \Longrightarrow \quad \frac{1}{M_{i}} \leq m_{i}^{\prime}=\inf _{x \in\left[x_{i-1}, x_{i}\right]} \frac{1}{f(x)}, \quad M_{i}^{\prime}=\sup _{x \in\left[x_{i-1}, x_{i}\right]} \frac{1}{f(x)} \leq \frac{1}{m_{i}}
$$

Thus estimating the upper and lower sums for $\frac{1}{f}$, since all $\left(x_{i}-x_{i-1}\right) \geq 0$,

$$
\begin{aligned}
U\left(\frac{1}{f}, P\right)-L\left(\frac{1}{f}, P\right) & =\sum_{j=1}^{n}\left(M_{i}^{\prime}-m_{i}^{\prime}\right)\left(x_{i}-x_{i-1}\right) \\
& \leq \sum_{j=1}^{n}\left(\frac{1}{m_{i}}-\frac{1}{M_{i}}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{j=1}^{n} \frac{\left(M_{i}-m_{i}\right)}{m_{i} M_{i}}\left(x_{i}-x_{i-1}\right) \\
& \leq \sum_{j=1}^{n} \frac{\left(M_{i}-m_{i}\right)}{k^{2}}\left(x_{i}-x_{i-1}\right) \\
& =\frac{1}{k^{2}}(U(f, P)-L(f, P))<\frac{k^{2} \varepsilon}{k^{2}}=\varepsilon .
\end{aligned}
$$

(4.) Suppose that $f, g: \mathbf{R} \rightarrow \mathbf{R}$ are differentiable functions such that $g(x) \neq 0$ and $g^{\prime}(x) \neq 0$ for all $x \neq 0$. Suppose that $\lim _{x \rightarrow 0} f(x)=0, \lim _{x \rightarrow 0} g(x)=0$ and $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\pi$. Show that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\pi$.

This is just a particular case of l'Hôpital's Rule. So we may follow Proof (4.18). First notice that $g(x)-g(0) \neq 0$ and $g^{\prime}(x) \neq 0$ if $x \neq 0$, so we may divide by them. By the sequential characterization of limits, it suffices to show that $\lim _{k \rightarrow \infty} \frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}=\pi$ for every sequence $\left\{x_{i}\right\}_{i \in \mathbf{N}}$ such that $x_{i} \neq 0$ for all i and $x_{i} \rightarrow 0$ as $i \rightarrow \infty$. Similarly by the equivalence of the existence of a limit to the existence of equal left and right limits, we may assume $x_{i}>0$ for all i or $x_{i}<0$ for all i. As f and g are continuous at 0 , we have $f(0)=g(0)=0$. We may suppose that $0<x_{i}$ for all i. Now, since f is assumed to be continuous on $\left[0, x_{i}\right]$ and differentiable on ($0, x_{i}$) (actually we assumed more,) by the Generalized Mean Value Theorem there is a $c_{i} \in\left(0, x_{i}\right)$ so that

$$
\frac{f\left(x_{i}\right)}{g\left(x_{i}\right)}=\frac{f\left(x_{i}\right)-f(0)}{g\left(x_{i}\right)-g(0)}=\frac{f^{\prime}\left(c_{i}\right)}{g^{\prime}\left(c_{i}\right)} \rightarrow \pi \quad \text { as } i \rightarrow \infty .
$$

Now, letting $i \rightarrow \infty$, we have $x_{i} \rightarrow 0$. Since $0<c_{i}<x_{i}$, by the Squeeze Theorem, $c_{i} \rightarrow 0$, so the conclusion follows since the sequential characterization implies $\lim _{i \rightarrow \infty} \frac{f^{\prime}\left(c_{i}\right)}{g^{\prime}\left(c_{i}\right)}=\pi$. A similar argument on the left side gives the same conclusion.
(5.) Let f be continuous on $[a, b]$ and that $\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t$ for all $x \in[a, b]$. Then $f(x)=0$ for all $x \in[a, b]$.

Observe that if $x \in[a, b]$ then

$$
\int_{a}^{x} f(t) d t=\int_{x}^{b} f(t) d t=\int_{a}^{b} f(t) d t-\int_{a}^{x} f(t) d t \Longrightarrow \int_{a}^{x} f(t) d t=\frac{1}{2} \int_{a}^{b} f(t) d t=\text { const. }
$$

Thus, since f is continuous, by the Fundamental Theorem of Calculus, for all $x \in[a, b]$, the primitive function is differentiable and equals

$$
f(x)=\frac{d}{d x} \int_{a}^{x} f(t) d t=\frac{d}{d x} \text { const. }=0 .
$$

(6.) Let $f(x)=x+x^{3}+x^{5}$. Show f has a continuous inverse function $f^{-1}: \mathbf{R} \rightarrow \mathbf{R}$. Find $\left(f^{-1}\right)^{\prime}(3)$ if possible.

First observe that since f is a polynomial, it is differentiable on \mathbf{R}. Second, observe that f is strictly increasing on \mathbf{R}. (This is like Theorem 4.24.) To see this, choose any numbers $a<b$ and since f is
6. Math 3210 § 2. Final Exam Name:
continuous on $[a, b]$ and differentiable on (a, b), by the Mean Value Theorem there is a $c \in(a, b)$ so that $f(b)-f(a)=f^{\prime}(c)(b-a)$. However $f^{\prime}(c)=1+3 c^{2}+5 c^{4}>0$, so this implies $f(b)>f(a)$. Third we apply the Inverse Function Theorem 4.26. As f is strictly increasing (so one to one,) and continuous on \mathbf{R}, there is a continuous, strictly increasing inverse function on $f(\mathbf{R})=\mathbf{R}$ (since f is not bounded above and not bounded below.) By Theorem 4.27, since f is one to one, continuous and differentiable at x_{0} where $f^{\prime}\left(x_{0}\right)=1+3 x_{0}^{2}+5 x_{0}^{4} \neq 0$, the inverse function is differentiable. If $f\left(x_{0}\right)=y_{0}$ (for example $f(1)=3$) then

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)} \quad \Longrightarrow \quad\left(f^{-1}\right)^{\prime}(3)=\frac{1}{f^{\prime}(1)}=\frac{1}{1+3\left(1^{2}\right)+5\left(1^{4}\right)}=\frac{1}{9}
$$

(7.) Suppose that $x>-1$. Show that $\frac{1}{\sqrt{1+x}} \geq 1-\frac{x}{2}$.

This is an application of the Mean Value Theorem. Let $h(x)=(1+x)^{-1 / 2}-1+\frac{1}{2} x$. This function is differentiable for $x>-1$. Also notice that $h(0)=0$. Then for any $x>0$ there is a $c \in(0, x)$ so that $h(x)=h(x)-h(0)=h^{\prime}(c)(x-0)$. But $h^{\prime}(c)=\frac{1}{2}\left(1-(1+c)^{-3 / 2}\right)>0$ for $c>0$ because $(1+c)^{-3 / 2}<1$. Hence $h(x)>0$. Similarly, if $-1<x<0$ then there is a $c \in(x, 0)$ so that $-h(x)=h(0)-h(x)=h^{\prime}(c)(0-x)$. This time $h^{\prime}(c)<0$ because $(1+c)^{-3 / 2}>0$. Hence also $h(x)>0$. Putting inequalities on the two intervals and at zero together, $h(x) \geq 0$ for all $x>-1$.
(8.) Calculate $\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t$.

Let $F(x)=\int_{0}^{x} e^{t^{2}} d t$. Since $f(t)=e^{t^{2}}$ is continuous as it is the composition of continuous functions, $F(x)$ is differentiable and $F^{\prime}=f$, by the Fundamental Theorem of Calculus. The limit becomes the limit of a difference quotient

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{3}^{3+h} e^{t^{2}} d t=\lim _{h \rightarrow 0} \frac{F(3+h)-F(3)}{h}=F^{\prime}(3)=f(3)=e^{9}
$$

(9.) Suppose $g: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function. Find $\frac{d}{d t} \int_{0}^{t} g(x-t) d x$.

We do not yet have the machinery to pass derivatives through integrals. Therefore we shall change variables in the integral to put the dependence on t in the limits of integration. To that end, choose t and x_{0} so that $x_{0}<-|t|$. Let $F(t)=\int_{x_{0}}^{t} g(\xi) d \xi$. Since t is constant as far as the integration is concerned, change variables according to $\mathrm{x}=\varphi(\xi)=\xi+t$. Then since φ is continuously differentiable on \mathbf{R}, and g is continuous on $\varphi(\mathbf{R})=\mathbf{R}$, we have by the change of variables formula,

$$
\int_{0}^{t} g(x-t) d x=\int_{\varphi(-t)}^{\varphi(0)} g(x-t) d x=\int_{-t}^{0} g(\varphi(\xi)-t) \varphi^{\prime}(\xi) d \xi=\int_{-t}^{0} g(\xi) \cdot 1 d \xi=F(0)-F(-t)
$$

Since g is continuous on \mathbf{R}, by the Fundamental Theorem of Calculus, F is differentiable and $F^{\prime}(\xi)=g(\xi)$. Now, by the chain rule,

$$
\frac{d}{d t} \int_{0}^{t} g(x-t) d x=\frac{d}{d t}(F(0)-F(-t))=0-F^{\prime}(-t) \cdot(-1)=g(-t)
$$

(10.) Let $P=\left\{a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}$ be a partition of $[a, b]$. The mesh $\|P\|=\max \left\{x_{i}-x_{i-1}: i=\right.$ $1, \ldots, n\}$ is the length of the largest subinterval. Let $f:[a, b] \rightarrow \mathbf{R}$ be a bounded function. Show that f is integrable on $[a, b]$ if and only if
(\dagger) For all $\varepsilon>0$ there is $\delta>0$ so that $U(f, P)-L(f, P)<\epsilon$ whenever $\|P\|<\delta$.
You may use the theorem that f is integrable on $[a, b]$ if and only if
(\ddagger.) For all $\varepsilon>0$ there is a partition P so that $U(f, P)-L(f, P)<\epsilon$.
$(\dagger.) \Longrightarrow(\ddagger$.$) : Choose \epsilon$ and let δ be given by (\dagger). Then any partition such that $\|P\|<\delta$ works: $U(f, P)-L(f, P)<\epsilon$ for that P. Such a partition may be taken to be the one with equal subinternals, namely, $P=P_{n}=\left\{x_{i}\right\}_{i=1, \ldots, n}$ where $x_{i}=a+\frac{i}{n}(b-a)$.
($\ddagger.) \Longrightarrow(\dagger$.$) : Choose \epsilon>0$. By (\ddagger), there is a partition $Q=\left\{a=y_{1}<y_{2}<\cdots<y_{m}=b\right\}$ such that $U(f, Q)-L(f, Q)<\frac{\varepsilon}{2}$. The idea is to choose the mesh size δ much finer than Q so that only a few subintervals of a partition $P=\left\{a=x_{i}<x_{2}<\cdots<x_{n}=b\right\}$ such that $\|P\|<\delta$ straddle the y_{i} 's. Let $\eta=\min \left\{y_{i}-y_{i-1}: i=1, \ldots, m\right\}$ be the size of the smallest interval in Q. Since f is bounded there is $K<\infty$ so that $|f(x)|<K$ for all $x \in[a, b]$. Let $\delta=\min \left\{\frac{\eta}{2}, \frac{\varepsilon}{4 m K}\right\}$ and P any partition of $[a, b]$ such that $\|P\|<\delta$.

Let $M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} f, m_{i}=\inf _{\left[x_{i-1}, x_{i}\right]} f, M_{j}^{\prime}=\sup _{\left[y_{j-1}, y_{j}\right]} f$ and $m_{j}^{\prime}=\inf _{\left[y_{i-1}, y_{i}\right]} f$.
Note that if $\left[x_{i-1}, x_{i}\right] \subset\left[y_{j-1}, y_{j}\right]$ then $M_{i}-m_{i} \leq M_{j}^{\prime}-m_{j}^{\prime}$. And always we have $M_{i}-m_{i} \leq 2 K$.
Split the sum into the sum over those subintervals $\left[x_{i-1}, x_{i}\right] \subset\left[y_{j-1}, y_{j}\right]$ and the sum over those few i 's with $y_{j} \in\left(x_{i-1}, x_{i}\right)$ when y_{j} are not in P. Since $\|P\|<\eta$, no two y_{j} 's are ever in the same subinterval $\left[x_{i-1}, x_{i}\right]$.

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{j=1}^{m}\left(\sum_{\left[x_{i-1}, x_{i}\right] \subset\left[y_{j-1}, y_{j}\right]}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{y_{j} \in\left(x_{i-1}, x_{i}\right)}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right)\right) \\
& \leq \sum_{j=1}^{m}\left(\sum_{\left[x_{i-1}, x_{i}\right] \subset\left[y_{j-1}, y_{j}\right]}\left(M_{j}^{\prime}-m_{j}^{\prime}\right)\left(x_{i}-x_{i-1}\right)+\sum_{y_{j} \in\left(x_{i-1}, x_{i}\right)} 2 K \delta\right) \\
& \leq \sum_{j=1}^{m}\left(M_{j}^{\prime}-m_{j}^{\prime}\right)\left(y_{j}-y_{j-1}\right)+2 K m \delta=U(f, Q)-L(f, Q)+2 K m \delta<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

(11.) Suppose $f, f_{n}:[a, b] \rightarrow \mathbf{R}$ are functions such that f_{n} is integrable and $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then f is integrable on $[a, b]$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x . \tag{W}
\end{equation*}
$$

We show f is bounded and that for every $\varepsilon>0$ there is a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<$ ε, hence f is integrable. The idea is similar to proving that the uniform limit of continuous functions is continuous, namely, to approximate the limit f by an f_{n} with large enough n. Choose $0<\varepsilon<5(b-a)$. By uniform convergence, there is $R \in \mathbf{R}$ so that $\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{4(b-a)}$ whenever $n>R$ and $x \in[a, b]$. Choose $n \in \mathbb{N}$ so that $n>R$. Since f_{n} is integrable it is bounded: for some $K_{n}<\infty,\left|f_{n}(x)\right|<K_{n}$ for all $x \in[a, b]$. Thus by uniform convergence, $|f(x)|=\left|f(x)-f_{n}(x)+f_{n}(x)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right| \leq$ $\frac{\varepsilon}{5(b-a)}+K_{n} \leq 1+K_{n}$ since $\varepsilon<5(b-a)$, hence f is bounded. Since f_{n} is integrable, there is a partition $P=\left\{a=x_{0}<x_{1}<\cdots<x_{m}=b\right\}$ so that $U\left(f_{n}, P\right)-L\left(f_{n}, P\right)<\frac{\varepsilon}{2}$. We use the same partition for f.

Let $M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} f_{n}, m_{i}=\inf _{\left[x_{i-1}, x_{i}\right]} f_{n}$. By uniform continuity, for $x \in\left[x_{i-1}, x_{i}\right]$,

$$
m_{i}-\frac{\varepsilon}{5(b-a)}<f_{n}(x)-\left|f_{n}(x)-f(x)\right| \leq f(x) \leq f_{n}(x)+\left|f(x)-f_{n}(x)\right|<M_{i}+\frac{\varepsilon}{5(b-a)}
$$

8. Math 3210 § 2. Final Exam Name:

Let $M_{i}^{\prime}=\sup _{\left[x_{i-1}, x_{i}\right]} f$ and $m_{i}^{\prime}=\inf _{\left[x_{i-1}, x_{i}\right]} f$. Thus $M_{i}^{\prime} \leq M_{i}+\frac{\varepsilon}{5(b-a)}$ and $m_{i}^{\prime} \geq m_{i}-\frac{\varepsilon}{5(b-a)}$. Estimating,

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{i=1}^{m}\left(M_{i}^{\prime}-m_{i}^{\prime}\right)\left(x_{i}-x_{i-1}\right) \\
& \leq \sum_{i=1}^{m}\left(M_{i}+\frac{\varepsilon}{5(b-a)}-m_{i}+\frac{\varepsilon}{5(b-a)}\right)\left(x_{i}-x_{i-1}\right) \\
& =U\left(f_{n}, P\right)-L\left(f_{n}, P\right)+\frac{2 \varepsilon}{5(b-a)} \sum_{i=1}^{m}\left(x_{i}-x_{i-1}\right) \\
& \leq \frac{\varepsilon}{2}+\frac{2 \varepsilon(b-a)}{5(b-a)}<\varepsilon .
\end{aligned}
$$

So f is integrable on $[a, b]$. By uniform convergence, for all $n>R$ and all $x \in[a, b],\left|f_{n}(x)-f(x)\right|<\frac{\varepsilon}{5(b-a)}$ implies

$$
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x \leq \int_{a}^{b} \frac{\varepsilon}{5(b-a)} d x=\frac{\varepsilon(b-a)}{5(b-a)}<\varepsilon
$$

As ε was arbitrary, this implies ($\boldsymbol{*}$).
(12.) Let $p>0$. Show that the improper integral of $f(x)=\frac{\cos x}{(\ln x)^{p}}$ exists on (e, ∞).

Since f is continuous, on each interval $[e, R]$ the function f is integrable. The improper integral $\int_{e}^{\infty} f(x) d x$ exists provided $\lim _{R \rightarrow \infty} \int_{e}^{R} f(x) d x$ exists as a finite number.

The idea is to split the integral $I(R)=\int_{e}^{R} f(x) d x$ into three parts, each of which converges as $R \rightarrow \infty$. Let $\alpha=\frac{7 \pi}{2}>e, \beta(R)=2 \pi k(R)+\frac{3 \pi}{2}$ where $k(R) \in \mathbb{N}$ such that $2 \pi k(R)+\frac{3 \pi}{2} \leq R<2 \pi k(R)+\frac{7 \pi}{2}$ for $R>\frac{11 \pi}{2}, I_{1}=\int_{e}^{\alpha} f(x) d x, I_{2}=\int_{\alpha}^{\beta(R)} f(x) d x$ and $I_{3}=\int_{\beta(R)}^{R} f(x) d x$. Then $I(R)=I_{1}+I_{2}+I_{3}$. I_{1} is constant for all R. Since $(\ln x)^{p}$ is increasing for $x \geq e$ and tends to infinity as $x \rightarrow \infty$, and $\beta(R) \rightarrow \infty$ as $R \rightarrow \infty$,

$$
\left|I_{3}(R)\right| \leq \int_{\beta(R)}^{R} \frac{|\cos x|}{(\ln x)^{p}} d x \leq \int_{\beta(R)}^{R} \frac{d x}{(\ln \beta(R))^{p}}=\frac{R-\beta(R)}{(\ln \beta(R))^{p}} \leq \frac{2 \pi}{(\ln \beta(R))^{p}} \rightarrow 0 \text { as } R \rightarrow \infty .
$$

Finally, since $\cos (x)=-\cos (x+\pi)$,

$$
I_{2}=\sum_{j=2}^{k(R)+1} \int_{2 \pi j-\frac{\pi}{2}}^{2 \pi j+\frac{3 \pi}{2}} \frac{\cos x d x}{(\ln x)^{p}}=\sum_{j=2}^{k(R)+1} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{1}{[\ln (2 \pi j+x)]^{p}}-\frac{1}{[\ln (2 \pi j+\pi+x)]^{p}}\right) \cos x d x .
$$

$I_{2}(k(R))$ converges as $R \rightarrow \infty$ if and only if $I_{2}(k)$ converges as $k \rightarrow \infty$. But the parenthesis term and $\cos x$ are both positive, so that $I_{2}(k)$ is an increasing sequence in k, and hence converges if and only if it is bounded. But using $\cos x \leq 1$ and $(\ln s)^{p}$ is increasing,

$$
I_{2} \leq \pi \sum_{j=2}^{k(R)+1}\left(\frac{1}{\left[\ln \left(2 \pi j-\frac{\pi}{2}\right)\right]^{p}}-\frac{1}{\left[\ln \left(2 \pi j+\frac{3 \pi}{2}\right)\right]^{p}}\right)=\frac{\pi}{\left[\ln \left(\frac{7 \pi}{2}\right)\right]^{p}}-\frac{\pi}{\left[\ln \left(2 \pi k(R)+\frac{7 \pi}{2}\right)\right]^{p}} \leq \frac{\pi}{\left[\ln \left(\frac{7 \pi}{2}\right)\right]^{p}}
$$

since the sum telescopes.
9. Math 3210 § 2. \quad Final Exam \quad Name:
(13.) Evaluate the improper integral $\mathcal{I}=\int_{0}^{\pi / 2} \frac{\cos x}{(\sin x)^{1 / 3}} d x$, if it exists.

The function is continuous on $(0, \pi / 2]$ so it is integranble on every interval $[\varepsilon, \pi / 2]$ where $0<\varepsilon<\pi / 2$. Thus the improper integral exists if $\lim _{\varepsilon \rightarrow 0+} \int_{\varepsilon}^{\pi / 2} \frac{\cos x}{(\sin x)^{1 / 3}} d x$ has a finite limit. But changing variables $u=\varphi(x)=\sin x$,

$$
\int_{\varepsilon}^{\pi / 2} \frac{\cos x d x}{(\sin x)^{1 / 3}}=\int_{\varepsilon}^{\pi / 2} \frac{\varphi^{\prime}(x) d x}{(\varphi(x))^{1 / 3}}=\int_{\sin \varepsilon}^{1} \frac{d u}{u^{1 / 3}}=\left.\frac{3}{2} u^{2 / 3}\right|_{u=\sin \varepsilon} ^{1}=\frac{3}{2}\left(1^{2 / 3}-(\sin \varepsilon)^{2 / 3}\right) \rightarrow \frac{3}{2}
$$

as $\varepsilon \rightarrow 0+$, so the improper integral exists and $\mathcal{I}=3 / 2$.

