Math 3210 § 2. A Final & Some Solved Problems Name: SAMPLE
Treibergs ar December 1, 2009

Final Given Dec. 15, 2000. (That course covered Chapter 7 instead of Chapter 5.)
(1.) Using only the definition of differentiability and limit theorems, show that f(x) = % is differentiable

14z
at x =2 and that f'(2) = §.

(2.) Let E={-4%,2,-3,3,...} = {(1}_{1" in = 1,2,3,...}. Find inf E. Prove your answer.

(3.) Define a sequence by x1 =10 and xpy1 =2+ émn forn > 1.
i. Show that x,, is decreasing.
7. Show that x,, is bounded below.
7i1. Show that x©, — 3 as n — oo.

(4.) Let {xp}nen be a seqgence of real numbers.
i. State the definition: {x,}nen is a Cauchy Sequence.

ii. Show that the sequence {y, }nen is a Cauchy Sequence, where

_1 11 11 1 11 1 1 _ Ny (=R
M= %= 1 BT T T T s V4= 1 T2t T8 - Tasa - Ingeneral yn = 304, —r—
[Hint: You may first wish to prove that % < %%1]

(5.) Let E C R be a subset, a € E be a point and f : E — R be a function.
i. State the definitions: f is continuous at a. f is continuous on E.
ii. Define f(z) =z + %. Show directly from the definition that f is continuous on (0, c0).

2%, ifx € Q (x is a rational number,)

6.) Let f : R — R be d d b =

(6.) Let 1 - ¢ defined by f () { 0, ifz¢Q (xis not a rational number.)
i. Show that f is differentiable at x = 0 and find f'(0).
. If a # 0, is [ differentiable at a? Why?

(7.) Assume that the function f: R — R is differentiable on R and satisfies f(x) > 0 for all x € R. Using
only the definition of differentiability and limit theorems (and not the quotient rule for derivatives,) show

that the reciprocal g(x) = f(l_»,;) is differentiable for all a € R and that ¢'(a) = —;;g‘;;

(8.) Define a function f: R — R by f(x) = % Give an argument if true; give a counterexample if
false:

i. f:R — R is onto.

. f: R — R is one-to-one.

iti. There is a number xo € R so that f'(z) = 0.

(9.) Let f : R — R be a differentiable function. Suppose there is a constant 0 < M < oo so that |f'(§)| < M
forall € € R.

i. Prove that for all x,y € R there holds |f(z) — f(y)| < M|z —y|.

it. Assuming (i.), prove that f is uniformly continuous on R.

(10.) Define the sequence of functions by fn(z) = 7z +

is uniform on [—3,3].

Find lim f,(z) and show that the convergence

z
n n— 00
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Final Given Dec. 15, 2004.
(1.) Let E = {p :p,q € N}. Find the infimum, inf E. Prove your answer.
q

(2.) Using only the definition of integrability, prove that f(x) is integrable on [0,1], where

0, ifr=g;
fly =31 ifz=3;
2, otherwise.

(3.) Let f:]0,1] — R be continuous on [0,1] and suppose that f(x) =0 for each rational number  in [0, 1].
Prove that f(x) =0 for all z € [0, 1].

(4.) Determine whether the statements are true or false. If the statement is true, give the reason. If the
statement is false, provide a counterexample.
fla+h) — fla—h)

i. Statement. Let f: R — R be differentiable at a. Then }lbirr%) 57 = f'(a)

ii. Statement. Let f : [0,1] — R be such that |f(x)| is Riemann integrable on [0,1]. Then f(z) is
Riemann Integrable on [0, 1].

iii. Statement. If f : [a,b] — R is differentiable on [a,b]. Then F(z) = / f(t)dt is continuous on
[a,b]. ‘

(5.) Suppose that [ and g are continuous functions on [0,1] and differentiable on (0,1). Suppose that
£(0) = g(0) and that f'(z) < ¢'(z) for all x € (0,1). Show that f(x) < g(z) for all z € [0,1].

(6.) Let ECR and f : E — R.
i. State the definition: f is uniformly continuous on E.

it. Let f(x) be uniformly continuous on R. Prove that tlim {sup |f(z) — f(z+ t)|} =0.
—Y lzeR

n+1
dt.

int
(7.) Show that {z, }nen is a Cauchy sequence, where z, = / 151212
n

(8.) Let 1 =0 and xp 1 = % + sin(zy,) for alln > 1. Prove that {z,},en converges.
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Some solved problems from the last quarter of the semester (since the last midterm).

(1.) Show that f(xr) = [3z] is integrable on [0,1], where [x] is the greatest integer function. What is
Jo f(@)da?
To show f is integrable on [0, 1] we need to show that for every e > 0 there is a partition P = {0 = 2 <
21 < -+ < xp =1} of [0,1] so that that the upper sum minus the lower sum satisfies U(f, P) — L(f, P) < .
Choose ¢ > 0 and let  be any number such that 0 < n < min{e,1}. Because f(z) = 0 on the interval
[0, %), f=1on [%, %), f=2on [%, 1) and f(1) = 3, we shall choose a partition that has narrow intervals
near the jumps of the function. Let

1- 1 2 - 2 3 —
P—{I0—0<l’1—3?7<IE2—3<$3—3n<1'4—3<175—317<I6—1}

The sups and infs on the intervals are computed as follows

My= sup f(z)= sup 0=0, My= sup f(x)=1, Ms=1, My=2, M5 =2, Mg =3;

z€[zo,21] z€(0,252] we[452,4]
m;= inf f(z)= inf 0=0, mo= inf f(z)=0 mg=1ms=1 ms=2,mg=2;
z€[wo,71] a:E[O,l_T"] :ve[l_T",%]

Hence, since M1 —m; = Mg —ms3 = Ms—ms =0, My —mo = My —my = Mg—me = 1 and x9; —x2;_1 = 3
6

U—L=2(Mi_mi)(xi_mi*1) :g[(M2_m2)+(M4—m4)+(M6—m6)] = 3?77 <e.

1—
Thus f is integrable on [0,1]. We may compute the upper sum using za; 1 — T2; = Tn

6
U:ZMi(zi_Ii—l) :O—|—1~(172—1‘1)+1-(I3—1‘2)—|—2'(CC4—I3)—|—2'($5—I4)—|—3'(Z’6—$5)
i=1
n 1l—n 7 1—-n 7
=4+ —4+2- =42 — —=1
st t2gt2 43 g =14y
Similarly L(f, P) = 1. We deduce the value of the integral from the fact that for integrable functions, for
any partition the upper and lower sums bracket the integral. Thus for our partition above,

1
1= L(f, P) g/o F@)de <U(f,P) < 1+,

Since € > 0 was arbitrary, fol f(z)dz = 1.

(2.) Suppose that f : [—a,a] — R is integrable and odd (f(x) = —f(z) for all x € [—a,a].) Show that
I fa)de =0,

One solution is to use Riemann’s point sum to approximate the integral. Since f is integrable, if [ =
[%, f(x)dx then S(f, P,T) — I as ||P|| — 0 (see problem 10). This means that for every & > 0 there is a
partition P. such that for any refinement @ 2 P. where Q = {—a =29 < 21 < -+ < ,, = a} and for any
choice of sampling points T' = (¢1,ta,... ,t,) where t; € (x;_1,2;), we have that the Riemann Point Sum
satisfies |S(f,Q,T) — I] < e.
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Choose any ¢ > 0 and let P. be the corresponding partition. Throw in the reflections of all division points
of P; and zero to get a refined symmetric partition @ = P. U (—P.) U {0}, where —P. = {—t:t € P.}. (So
@ = —Q.) Hence we may use an unusual numbering with 2n intervals for @ so that z_; = —x;,

Q:{—a:x,n<1}1,n<...<x,1<x0:o<x1<...<xn:a}.

We also choose symmetric sample points T' = (t1—_p,ta—n, ... ,tn) Where t; € (z;-1,2;) and t1_; = —t; €
(x—j,x1—-;) for 4,5 =1,... ,n. Now since f is odd, this implies that f(t1_x) = —f(¢tx) for all k. Thus after
changing dummy index j = 1 — k, the Riemann sum is

S(f7Q7T): f(tj)(‘rj_mjfl)

n

n

Ft) @y —zm1) + > () (@5 — zj-1)

M= L

j=1—n j=1
= Z ftip) @1k —2g) + Z Jt) (@5 —xj-1)
k=1 j=1
= > —flt)(—mior +zR) + > f(t) (e —aj1)
-1 j=1

Il
SR

Thus we have shown that for alle > 0, |0 —I| = |S(f,Q,T) —I| <esoI=0.
Another method is to split the integral as the sum I = [ Ea f(x)dz+ foa f(x) dz and then change variables
= (§) = —¢ in the first integral [°, f(z)dz = [} f(p(&) ¢ (€)d€ = — [ F(=€) d€ = — [/ (§) d€ which

cancels the second integral.

(3.) Suppose a < b, 0 <k and f : [a,b] — R is an integrable function such that f(x) >k for all x € [a,b].
Show that h(zx) = ﬁ is integrable on [a,b].

We are to show that % is bounded and for every € > 0 there is a partition P such that the upper sum
minus the lower sum U(%, p)— L(%,P) <e.

As f is integrable, it is bounded: there is M € R so that , k < f(x) < M for all € [a,b]. But as k > 0
we conclude that 1 < ﬁ < & for all z € [a,b], thus § is bounded.

Choose € > 0. As f is integrable, there is a partition P = {a = zo < 21 < -+ < ®, = b} so that
U(f,P)— L(f, P) < k%c. Consider the sup and inf over each of the subintervals

m; = inf  f(x), M;= sup f(x).

ze[rz—l,fi] -796[3711—1»-'51']
Since k < m; < f(z) < M; for x € [x;_1, z;], sup and inf for % satisfy on this interval

1 1
— <<

SRR
M; = f(z) = my

M;

1 1
<m,= inf ——, M= sup ——<
x

—— i
z€[Ti—1,74) f( ) z€lmi_1,7i] f(x)

1
mi'



5. Math 3210 § 2. Final Exam Name:

Thus estimating the upper and lower sums for
1 1 o,
U(+P)—L(4.P)=> (M —mj(x;—x;1)
f f p
/1 1
< 32 (5 ag ) e

since all (x; — 2;-1) > 0,

kﬁ\»—\

- S
= Z(Mik_?ml)(xl Ti-1)
25
= SWU(P) - L P) < =c

(4.) Suppose that f,g : R — R are differentiable functions such that g(xz) # 0 and ¢'(z) # 0 for all x # 0.
/
f/(x) = m. Show that lim M =
g'(x) 2—0 g(z)
This is just a particular case of I’'Hopital’s Rule. So we may follow Proof (4.18). First notice that
g(x) — g(0) # 0 and ¢'(z) # 0 if  # 0, so we may divide by them. By the sequential characterization of

.
limits, it suffices to show that lim f(@:)
x; — 0 as ¢ — oo. Similarly by the equivalence of the existence of a limit to the existence of equal left and
right limits, we may assume z; > 0 for all 7 or x; < 0 for all i. As f and g are continuous at 0, we have
f(0) = g(0) = 0. We may suppose that 0 < z; for all i. Now, since f is assumed to be continuous on [0, z;]

and differentiable on (0, z;) (actually we assumed more,) by the Generalized Mean Value Theorem there is
a ¢; € (0,2;) so that
@) _ fw) = £0) _ fe)
g(z;) g(z:) — 9(0) g'(ci)
Now, letting ¢ — 0o, we have x; — 0. Since 0 < ¢; < x;, by the Squeeze Theorem, ¢; — 0, so the conclusion

!
s
follows since the sequential characterization implies lim f/( i)
S gle)

Suppose that lim f(z) =0, lim g(z) =0 and lim
r—0 r—0 z—0

= 7 for every sequence {;};en such that x; # 0 for all ¢ and

— T as 1t — 00.

= 7. A similar argument on the left side

gives the same conclusion.

(5.) Let f be continuous on [a,b] and that [’ f(t)dt = ff f(®)dt for all x € [a,b]. Then f(x) =0 for all
x € [a,b)].
Observe that if z € [a,b] then

/f t)dt = /f t)dt = /f dt—/f dt:>/f ;/abf(t)dtzconst.

Thus, since f is continuous, by the Fundamental Theorem of Calculus, for all z € [a, b], the primitive function
is differentiable and equals
— t. = 0.
= / f) cons

(6.) Let f(z) =z + 23+ 25 Show f has a continuous inverse function f~1 : R — R. Find (f~1)'(3) if
possible.

First observe that since f is a polynomial, it is differentiable on R. Second, observe that f is strictly
increasing on R. (This is like Theorem 4.24.) To see this, choose any numbers a < b and since f is
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continuous on [a,b] and differentiable on (a,b), by the Mean Value Theorem there is a ¢ € (a,b) so that
f(b) — f(a) = f'(c)(b — a). However f'(c) = 1+ 3c®> + 5¢* > 0, so this implies f(b) > f(a). Third we
apply the Inverse Function Theorem 4.26. As f is strictly increasing (so one to one,) and continuous on
R, there is a continuous, strictly increasing inverse function on f(R) = R (since f is not bounded above
and not bounded below.) By Theorem 4.27, since f is one to one, continuous and differentiable at xy where
f'(z0) = 1+ 322 + 52 # 0, the inverse function is differentiable. If f(xg) = yo (for example f(1) = 3) then

1
f'(wo)

1 1 1

F)  1+3(12)+501% 9

(f1) (wo) = = (fFYHY@E=

(7.) Suppose that x > —1. Show that \/11+7 >1-3.

This is an application of the Mean Value Theorem. Let h(z) = (1 +z)~ Y2 — 1 + 2z. This function
is differentiable for x > —1. Also notice that h(0) = 0. Then for any x > 0 there is a ¢ € (0,x) so that
h(z) = h(z) — h(0) = K (c)(z — 0). But h'(c) = 3 (1 — (1+¢)~3/2) > 0 for ¢ > 0 because (1 +¢)~%2 < 1.
Hence h(x) > 0. Similarly, if —1 < z < 0 then there is a ¢ € (z,0) so that —h(z) = h(0) —h(x) = h'(c)(0—z).
This time A’(c) < 0 because (1 + ¢)~3/2 > 0. Hence also h(z) > 0. Putting inequalities on the two intervals
and at zero together, h(x) > 0 for all x > —1.

1 3+h )
(8.) Calculate lim 7/ el dt.
h—0 h [3

Let F(x) = fox e’ dt. Since f (t) = ¢!’ is continuous as it is the composition of continuous functions, F (x)
is differentiable and F’ = f, by the Fundamental Theorem of Calculus. The limit becomes the limit of a
difference quotient

1, . F(3+h) —F(@3) , 0
}132%%3 e dtf%%ffms)ff(g)fe.

d t
9.) Suppose g : R — R is a continuous function. Find — gz —t)dz.
dt
0

We do not yet have the machinery to pass derivatives through integrals. Therefore we shall change
variables in the integral to put the dependence on t in the limits of integration. To that end, choose ¢t and xg
so that xg < —[t|. Let F(t) = f;o g(&) d€. Since t is constant as far as the integration is concerned, change
variables according to x=¢(§) = £ +t. Then since ¢ is continuously differentiable on R, and g is continuous
on p(R) = R, we have by the change of variables formula,

[ ote-na= | ii))gu—t)dx: [ steter v @ = [ 0@ 10 = F0) - Fi-0)

Since g is continuous on R, by the Fundamental Theorem of Calculus, F is differentiable and F’(§) = g(&).
Now, by the chain rule,

dar d
dt J,

(10.) Let P={a =20 < 21 < --- < &y, = b} be a partition of [a,b]. The mesh ||P|| = max{z;, —z;_1 :i =
1,...,n} is the length of the largest subinterval. Let f : [a,b] — R be a bounded function. Show that f is
integrable on [a,b] if and only if

(1) For all e > 0 there is § > 0 so that U(f, P) — L(f, P) < € whenever ||P|| <§.
You may use the theorem that f is integrable on [a,b] if and only if
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(1.) For all € > 0 there is a partition P so that U(f,P) — L(f, P) < e.

(f.) = (1.): Choose € and let § be given by (f). Then any partition such that ||P|| < ¢ works:
U(f,P)— L(f,P) < e for that P. Such a partition may be taken to be the one with equal subinternals,
namely, P = P,, = {x;};=1,.. » where x; = a + %(b —a).

(1) = (f.): Choose ¢ > 0. By (1), there is a partition @ = {a = y1 < y2 < -+ < Y, = b} such
that U(f,Q) — L(f,Q) < §. The idea is to choose the mesh size § much finer than @ so that only a few
subintervals of a partition P = {a = z; < 3 < -+ < x,, = b} such that ||P| < § straddle the y;’s. Let

7 = min{y; —y;—1 : ¢ = 1,...,m} be the size of the smallest interval in Q. Since f is bounded there is
K < oo so that |f(z)] < K for all z € [a,b]. Let 6 = min {g, ﬁ} and P any partition of [a, b] such that
m
|P|| < 6.
Let M; = sup f,m;= inf f, Mj= sup fandmj= inf f.

[@i1,m3) [wi-1,mi] [y5—1,5] [yi—1.9i]
Note that if [z;_1,2;] C [y;—1,y;] then M; —m; < M]' — m;.. And always we have M; — m; < 2K.
Split the sum into the sum over those subintervals [z;_1,2;] C [y;—1,y;] and the sum over those few i’s
with y; € (z;-1,2;) when y; are not in P. Since ||P| < 7, no two y;’s are ever in the same subinterval
[J?i_l, xz]

I
NE

U(f»P)*L(faP) (Mi*mi)(lﬂi*%:—l)

1

.
Il

I
NE

Z (M; —mg)(x; — xi—1) + Z (M; —my)(x; — xi-1)

[zi—1,2:]Clyj—1,Y5] Yy €(Ti—1,24)

<.
I
—

NE

> (M} —mf)(w; —xiia)+  y,  2K6

1 [zi—1,2:]Clyj—1,Y5] yjE€(xTi—1,24)

<.
Il

(M —m)(y; —yj—1) +2Kmé = U(f,Q) — L(f,Q) + 2Kmé < g + % -

<
Il
—_

-

(11.) Suppose f, fn : la,b] — R are functions such that f, is integrable and f, — f uniformly on [a,b].
Then f is integrable on [a,b] and

b b

(%) i [ fu@)de = [ fa)de

We show f is bounded and that for every ¢ > 0 there is a partition P of [a, b] such that U(f, P)—L(f, P) <
€, hence f is integrable. The idea is similar to proving that the uniform limit of continuous functions is
continuous, namely, to approximate the limit f by an f,, with large enough n. Choose 0 < ¢ < 5(b — a).
By uniform convergence, there is R € R so that |fu(z) — f(2)| < 357, whenever n > R and z € [a,l].
Choose n € N so that n > R. Since f,, is integrable it is bounded: for some K, < oo, |fn(z)| < K, for
all x € [a,b]. Thus by uniform convergence, |f(z)| = |f(z) — fu(z) + fu(z)| < |f(x) — fu(@)] + |fu(2)] <

€

Sh-a) T K, <14 K, since ¢ < 5(b — a), hence f is bounded. Since f,, is integrable, there is a partition
P={a=x0<w1 < <y = b} s0 that U(fy, P) — L(fn,P) < 5. We use the same partition for f.

Let M; = sup fn, m; = : inf f,. By uniform continuity, for x € [z;_1, ],
[xi—1,24] Ti—1,%i

& 3

S gy < (@)~ 1£2(e) = F@ < (@) < Fule) +17(@) = Fule) < Myt 575

m; —
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Let M{ = sup fandm;= inf f. Thus M <M, + - (b 2 and m) > m; — 5(b€77a)' Estimating,

[Ti—1,2i] Li—1,2i

M, —ml)(z; — mi_1)

Ul P) = Lfs P) + 2o S (i = i)

2e(b—a)
+ 75(17 ) <e.

U(s, P i
<3 (m

IN
N ™

So f is integrable on [a,b]. By uniform convergence, for all n > R and all z € [a,b], |fn(z) — f(2)] < 5575

implies
b b
/ fn(x)das—/ f(x)dx

As e was arbitrary, this implies ().

b b .
< [ 1o - s < [ gty G <

COS T

(Inz)P

Since f is continuous, on each interval [e, R] the function f is integrable. The improper integral feoo f(x)dx

(12.) Let p > 0. Show that the improper integral of f(x) = exists on (e, 00).

exists provided Rlim feR f(x) dz exists as a finite number.
— 0

The idea is to split the integral I(R f " f(x) dx into three parts, each of which converges as R — oo.
Let o« = T > e, B(R) = 2rk(R) + —” where k( ) € N such that 27k(R) + 2% < R < 27k(R) + ¢ for

R>Us [ = [“fla)de, [, = [P )f dw and Iy = [50p f(@)dz. Then I(R) = I + I + Is. I is

constant for all R. Since (Inz)? is increasing for © > e and tends to infinity as © — oo, and S(R) — oo as
R — o0,

R R
| cos x| / dz R — B(R) 27
I3(R S/ dx < = < —0as R — oo.
NS oy Gy = iy W@y ~ B = WBR)
Finally, since cos(z) = — cos(x + ),
k(R)+1 k(R)+1

2+ cos dov 1
I, = / / < - > cosz dx.
j; omj—z  (Inz)P Z = \[In( 27r] +2)P  [In27j+ 7+ 2)P

I(k(R)) converges as R — oo if and only if I»(k) converges as k — oo. But the parenthesis term and
cosz are both positive, so that I>(k) is an increasing sequence in k, and hence converges if and only if it is
bounded. But using cosz < 1 and (In s)? is increasing,

E(R)+1

1 1 T T T
b= Z ( () — D (2 + 3;)]17) m(EF  WmEdk® + DP - WGP

since the sum telescopes.
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CoS T

/2
(13.) Ewvaluate the improper integral T = / ( dx, if it ewists.
0

sinz)1/3
The function is continuous on (0,7/2] so it is integranble on every interval [e,7/2] where 0 < £ < 7/2.
™2 cosw
Thus the improper integral exists if lim ————dz has a finite limit. But changing variables
=0+ ). (sinxz)l/3

u=(z)=sinz,

c (sin l’)l/?’ e ((P(x))l/g sine u1/3 2

as € — 0+, so the improper integral exists and Z = 3/2.

L anep)

N w

u=sin e



