These problems were due on September 8, 2009. They are taken from An Introduction to Analysis by Wm. R. Wade, Prentice Hall 2004.

- [6.] Let X and Y be sets and $f: X \to Y$. Prove that the following are equivalent.
 - a.) f is 1–1 on X.
 - b.) $f(A \setminus B) = f(A) \setminus f(B)$ for all subsets A and B of X.
 - c.) $f^{-1}(f(E)) = E$ for all subsets E of X.
 - d.) $f(A \cap B) = f(A) \cap f(B)$ for all subsets A and B of X.
- [7.] Let $E_{\alpha} \subset X$ be subsets for all $\alpha \in A$. Then

(1)
$$\left(\bigcup_{\alpha\in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha\in A} E_{\alpha}^{c},$$
(2)
$$\left(\bigcap_{\alpha\in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha\in A} E_{\alpha}^{c}.$$

[8.] Let X, Y be sets and $f: X \to Y$ be a function. Then (iii.) If $E_{\alpha} \subset X$ are subsets for $\alpha \in A$, then

(3)
$$f^{-1}\left(\bigcup_{\alpha\in A} E_{\alpha}\right) = \bigcup_{\alpha\in A} f^{-1}\left(E_{\alpha}\right),$$

(4)
$$f^{-1}\left(\bigcap_{\alpha\in A} E_{\alpha}\right) \subset \bigcap_{\alpha\in A} f^{-1}\left(E_{\alpha}\right)$$

(iv.) If $B, C \subset Y$ then

(5)
$$f^{-1}(C \setminus B) = f^{-1}(C) \setminus f^{-1}(B).$$

- (v.) If $S \subset f(X)$ then $f(f^{-1}(S)) = S$. If $E \subset X$ then $f^{-1}(f(E)) \supset E$.
- [9.] Suppose X, Y, Z are sets and $f: X \to Y$ and $g: Y \to Z$ are functions. Let $g \circ f: X \to Z$ be defined by $g \circ f(x) = g(f(x))$ for all $x \in X$.
 - (i.) If both f and g are one-to-one then $g \circ f$ is one-to-one.
 - (ii.) If both f and g are onto, then $g \circ f$ is onto.

These problems were taken from Introduction to Analysis by A. Mattuck, Prentice Hall 1999.

[B.1.1] A tail of a sequence $\{a_n\}_{n\in\mathbb{N}}$ is the sequence after removing the first N-1 terms of $\{a_n\}$. Write the given sentence with quantifiers in the right order; Interchange the order of the first two quantifiers if possible and interpret.

Every tail of $\{a_n\}_{n \in \mathbb{N}}$ has a maximal element.

[B.1.2.] Render in English a statement equivalent of the negated sentence. Then write the given sentence with quantifiers and negations in the right order. Use the rules for negating quantifiers to rewrite the original sentence.

 $\mathcal{S} :=$ "The sequence $\{a_n\}_{n \in \mathbb{N}}$ has no minimum."

[B.1.3.] Write the given sentence with quantifiers in the right order. Use the rules for negating quantifiers to negate the sentence. Then verify that the given is a counterexample to the sentence.

f is bounded on the interval I = (0, 1]. $f(x) = \frac{1}{x}$ is not bounded above on I.