Math 3210 § 2. Solutions of Homework Problems

Name: SAMPLE
September 15, 2008

These problems were due on September 8, 2009. They are taken from An Introduction to Analysis by Wm. R. Wade, Prentice Hall 2004.
[6.] Let X and Y be sets and $f: X \rightarrow Y$. Prove that the following are equivalent.
a.) f is $1-1$ on X.
b.) $\quad f(A \backslash B)=f(A) \backslash f(B)$ for all subsets A and B of X.
c.) $f^{-1}(f(E))=E$ for all subsets E of X.
d.) $\quad f(A \cap B)=f(A) \cap f(B)$ for all subsets A and B of X.
[7.] Let $E_{\alpha} \subset X$ be subsets for all $\alpha \in A$. Then

$$
\begin{align*}
& \left(\bigcup_{\alpha \in A} E_{\alpha}\right)^{c}=\bigcap_{\alpha \in A} E_{\alpha}^{c} \tag{1}\\
& \left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c}=\bigcup_{\alpha \in A} E_{\alpha}^{c} \tag{2}
\end{align*}
$$

[8.] Let X, Y be sets and $f: X \rightarrow Y$ be a function. Then
(iii.) If $E_{\alpha} \subset X$ are subsets for $\alpha \in A$, then

$$
\begin{align*}
f^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) & =\bigcup_{\alpha \in A} f^{-1}\left(E_{\alpha}\right) \tag{3}\\
f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) & \subset \bigcap_{\alpha \in A} f^{-1}\left(E_{\alpha}\right) \tag{4}
\end{align*}
$$

(iv.) If $B, C \subset Y$ then

$$
\begin{equation*}
f^{-1}(C \backslash B)=f^{-1}(C) \backslash f^{-1}(B) \tag{5}
\end{equation*}
$$

(v.) If $S \subset f(X)$ then $f\left(f^{-1}(S)\right)=S$. If $E \subset X$ then $f^{-1}(f(E)) \supset E$.
[9.] Suppose X, Y, Z are sets and $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions. Let $g \circ f: X \rightarrow Z$ be defined by $g \circ f(x)=g(f(x))$ for all $x \in X$.
(i.) If both f and g are one-to-one then $g \circ f$ is one-to-one.
(ii.) If both f and g are onto, then $g \circ f$ is onto.

These problems were taken from Introduction to Analysis by A. Mattuck, Prentice Hall 1999.

[B.1.1] A tail of a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is the sequence after removing the first $N-1$ terms of $\left\{a_{n}\right\}$. Write the given sentence with quantifiers in the right order; Interchange the order of the first two quantifiers if possible and interpret.

$$
\text { Every tail of }\left\{a_{n}\right\}_{n \in \mathbb{N}} \text { has a maximal element. }
$$

[B.1.2.] Render in English a statement equivalent of the negated sentence. Then write the given sentence with quantifiers and negations in the right order. Use the rules for negating quantifiers to rewrite the original sentence.

$$
\mathcal{S}:=\text { "The sequence }\left\{a_{n}\right\}_{n \in \mathbb{N}} \text { has no minimum." }
$$

[B.1.3.] Write the given sentence with quantifiers in the right order. Use the rules for negating quantifiers to negate the sentence. Then verify that the given is a counterexample to the sentence.

$$
f \text { is bounded on the interval } I=(0,1] . \quad f(x)=\frac{1}{x} \text { is not bounded above on } I .
$$

