Math 3210 § 2.
Treibergs

Third Midterm Exam
[1.] Using just the definition of derivative, show that $f(x)=\frac{1}{\sqrt{x}}$ is differentiable at $c=9$ and find $f^{\prime}(9)$.

The derivative exists if the limit of the difference quotient exists. Since $x>0$ as $x \rightarrow 9$, by the "workhorse theorem," the limit of the quotient of products exists and is the quotient of the products of the limits. Hence f is differentiable and its derivative is

$$
\begin{gathered}
\lim _{x \rightarrow 9} \frac{f(x)-f(9)}{x-9}=\lim _{x \rightarrow 9} \frac{\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{9}}}{x-9}=\lim _{x \rightarrow 9} \frac{\sqrt{9}-\sqrt{x}}{\sqrt{x} \sqrt{9}(x-9)}=\lim _{x \rightarrow 9} \frac{(\sqrt{9}-\sqrt{x})(\sqrt{9}+\sqrt{x})}{\sqrt{x} \sqrt{9}(x-9)(\sqrt{9}+\sqrt{x})}= \\
\lim _{x \rightarrow 9} \frac{9-x}{\sqrt{x} \sqrt{9}(x-9)(\sqrt{9}+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{-1}{\sqrt{x} \sqrt{9}(\sqrt{9}+\sqrt{x})}=-\frac{1}{2 \cdot 9^{3 / 2}}=-\frac{1}{54}=f^{\prime}(9)
\end{gathered}
$$

[2.] State the definition: $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy Sequence. Let $x_{1} \in \mathbb{R}$ be any number. Define the sequence recursively by $x_{n+1}=3-\frac{1}{2} x_{n}$ for all $n \in \mathbb{N}$. Show that $\left|x_{n+2}-x_{n+1}\right| \leq \frac{1}{2}\left|x_{n+1}-x_{n}\right|$ for all $n \in \mathbb{N}$. Using the definition, show that this $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy Sequence.

Definition: $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}$ is a Cauchy Sequence if for every $\epsilon>0$ there is an $N \in \mathbb{R}$ such that $\left|x_{k}-x_{\ell}\right|<\epsilon$ whenever $k, \ell \in \mathbb{R}$ satisfy $k, \ell>N$.

Computing for each n,

$$
\left|x_{n+2}-x_{n+1}\right|=\left|3-\frac{1}{2} x_{n+1}-\left(3-\frac{1}{2} x_{n}\right)\right|=\frac{1}{2}\left|x_{n+1}-x_{n}\right|
$$

Thus, by induction, it follows that for each $n \in \mathbb{N}$,

$$
\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2^{n-1}}\left|x_{2}-x_{1}\right|
$$

To complete the argument that the sequence is Cauchy, choose $\epsilon>0$. Let $N=3+\frac{\left|x_{2}-x_{1}\right|}{\epsilon}$. Then, if $k, \ell \in \mathbb{N}$ satisfy $k, \ell>N$ either $k=\ell$ so $\left|x_{k}-x_{\ell}\right|=0<\epsilon$ or we may assume, after swapping if necessary, that $k>\ell$. Then sneaking in intermediate terms, using the inequality above and the formula for a geometric sum $1+r+\cdots+r^{m}=\frac{1-r^{m+1}}{1-r}$, and $2^{n} \geq n$,

$$
\begin{gathered}
\left|x_{k}-x_{\ell}\right|=\left|x_{k}-x_{k-1}+x_{k-1}-\cdots-x_{\ell}\right| \leq\left|x_{k}-x_{k-1}\right|+\left|x_{k-1}-x_{k-2}\right|+\cdots+\left|x_{\ell+1}-x_{\ell}\right| \leq \\
\left(\frac{1}{2^{k-2}}+\frac{1}{2^{k-3}}+\cdots+\frac{1}{2^{\ell-1}}\right)\left|x_{2}-x_{1}\right|=\left(\frac{1}{2^{\ell-2}}-\frac{1}{2^{k-2}}\right)\left|x_{2}-x_{1}\right| \leq \frac{\left|x_{2}-x_{1}\right|}{\ell-2} \leq \frac{\left|x_{2}-x_{1}\right|}{N-2}<\epsilon
\end{gathered}
$$

[3.] Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

1. Statement: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is not differentiable at $c \in \mathbb{R}$ then f is not continuous at c.

FALSE. The function $f(x)=|x|$ is not differentiable at $c=0$ but it is continuous there.
2. Statement: If $g:[0,1] \rightarrow \mathbb{R}$ is a continuous function such that $g(0)=1$ and $g(1)=0$. then there is a point $c \in[0,1]$ such that $c=g(c)$.
TRUE. Let $w(x)=x-g(x)$ which is a difference of continuous functions, hence continuous on $[0,1]$. $w(0)=0-g(0)=-1 . w(1)=1-g(1)=1$. By the intermediate value theorem there is $c \in[0,1]$ so that $w(c)=0$. Thus for this $c, c=g(c)$.
3. Statement: If $h:(0,1) \rightarrow \mathbb{R}$ is continuous and bounded, then it is uniformly continuous.

FALSE. The function $h(x)=\sin (1 / x)$ is continuous and bounded on $(0,1)$ but it is not uniformly continuous. If it were uniformly continuous, it would have a continuous extension to $H:[0,1] \rightarrow \mathbb{R}$ such that $H(x)=h(x)$ for all $x \in(0,1)$. But H cannot be continuous at zero. The sequence $x_{n}=1 /(\pi n+\pi / 2)$ tends to zero as $n \rightarrow \infty$ but $H\left(x_{n}\right)=(-1)^{n}$ does not converge to $H(0)$ as $n \rightarrow \infty$ because it doesn't even converge.
[4.] Let $: \mathbb{R} \rightarrow \mathbb{R}$ be a function. State the definition: f is continuous at $a \in \mathbb{R}$. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in \mathbb{R}$, then there exist positive constants M and $\delta>0$ so that $|f(x)| \leq M$ for all $x \in \mathbb{R}$ such that $a-\delta<x<a+\delta$.

Definition: f is continuous on \mathbb{R} if for every $a \in \mathbb{R}$ and every $\epsilon>0$ there is a $\delta>0$ such that $|f(x)-f(a)|<\epsilon$ whenever $x \in \mathbb{R}$ satisfies $|x-c|<\delta$.

Let $\epsilon=1$ and apply continuity. There is a $\delta>0$ so that $|f(x)-f(a)|<\epsilon$ whenever the real number x satisfies $a-\delta<x<a+\delta$. For such x,

$$
|f(x)|=|f(a)+f(x)-f(a)| \leq|f(a)|+|f(x)-f(a)|<|f(a)|+\epsilon \leq|f(a)|+1=M
$$

Thus we have established the desired estimate with this δ and $M=|f(a)|+1$.
[5.] Let $f, f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be functions for all $n \in \mathbb{N}$. State the definition: f_{n} converges pointwise to f as $n \rightarrow \infty$; State the definition: f_{n} converges uniformly to f as $n \rightarrow \infty$. Let $f_{n}(x)=\frac{1}{1+n^{2}+x^{2}}$. Does $f_{n} \rightarrow 0$ pointwise? Does $f_{n} \rightarrow 0$ uniformly? Why?

Definition: f_{n} converges to f pointwise as $n \rightarrow \infty$ in \mathbb{R} iff for every $x \in \mathbb{R}, \lim _{n \rightarrow \infty} f_{n}(x)=f(x)$. In other words, $(\forall x \in \mathbb{R})(\forall \varepsilon>0)(\exists N \in \mathbb{R})(\forall n \in \mathbb{N})\left(n>N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\epsilon\right)$.

Definition: f_{n} converges to f uniformly as $n \rightarrow \infty$ in \mathbb{R} iff $(\forall \varepsilon>0)(\exists N \in \mathbb{R})(\forall x \in \mathbb{R})(\forall n \in \mathbb{N})\left(n>N \Longrightarrow\left|f_{n}(x)-f(x)\right|<\epsilon\right)$.

To see that the convergence is pointwise, we choose $x \in \mathbb{R}$. Then, using limit theorems,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{1}{1+n^{2}+x^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}+1+\frac{x^{2}}{n^{2}}}=\frac{0}{0+1+0}=0
$$

To see that the convergence is also uniform, choose $\epsilon>0$. Let $N=\frac{1}{\sqrt{\epsilon}}$. Then for any choice of $x \in \mathbb{R}$ and $n \in \mathbb{N}$ such that $n>N$ we have

$$
\left|f_{n}(x)-0\right|=\left|\frac{1}{1+n^{2}+x^{2}}\right| \leq \frac{1}{1+n^{2}}<\frac{1}{N^{2}}=\varepsilon
$$

