
Math 3210 § 2.
Treibergs

Third Midterm Exam Name:
November 11, 2009

[1.] Using just the definition of derivative, show that f(x) =
1√
x

is differentiable at c = 9 and

find f ′(9).

The derivative exists if the limit of the difference quotient exists. Since x > 0 as x → 9, by
the “workhorse theorem,” the limit of the quotient of products exists and is the quotient of the
products of the limits. Hence f is differentiable and its derivative is

lim
x→9

f(x)− f(9)
x− 9

= lim
x→9

1√
x
− 1√

9
x− 9

= lim
x→9

√
9−
√
x

√
x
√

9(x− 9)
= lim
x→9

(
√

9−
√
x)(
√

9 +
√
x)

√
x
√

9(x− 9)(
√

9 +
√
x)

=

lim
x→9

9− x
√
x
√

9(x− 9)(
√

9 +
√
x)

= lim
x→9

−1
√
x
√

9(
√

9 +
√
x)

= − 1
2 · 93/2

= − 1
54

= f ′(9).

[2.] State the definition: {xn}n∈N is a Cauchy Sequence. Let x1 ∈ R be any number. Define the
sequence recursively by xn+1 = 3 − 1

2xn for all n ∈ N. Show that |xn+2 − xn+1| ≤ 1
2 |xn+1 − xn|

for all n ∈ N. Using the definition, show that this {xn}n∈N is a Cauchy Sequence.

Definition: {xn}n∈N ⊂ R is a Cauchy Sequence if for every ε > 0 there is an N ∈ R such that
|xk − x`| < ε whenever k, ` ∈ R satisfy k, ` > N .

Computing for each n,

|xn+2 − xn+1| =
∣∣∣∣3− 1

2
xn+1 −

(
3− 1

2
xn

)∣∣∣∣ =
1
2
|xn+1 − xn|.

Thus, by induction, it follows that for each n ∈ N,

|xn+1 − xn| ≤
1

2n−1
|x2 − x1|.

To complete the argument that the sequence is Cauchy, choose ε > 0. Let N = 3+ |x2−x1|
ε . Then,

if k, ` ∈ N satisfy k, ` > N either k = ` so |xk − x`| = 0 < ε or we may assume, after swapping if
necessary, that k > `. Then sneaking in intermediate terms, using the inequality above and the
formula for a geometric sum 1 + r + · · ·+ rm = 1−rm+1

1−r , and 2n ≥ n,

|xk − x`| = |xk − xk−1 + xk−1 − · · · − x`| ≤ |xk − xk−1|+ |xk−1 − xk−2|+ · · ·+ |x`+1 − x`| ≤(
1

2k−2
+

1
2k−3

+ · · ·+ 1
2`−1

)
|x2 − x1| =

(
1

2`−2
− 1

2k−2

)
|x2 − x1| ≤

|x2 − x1|
`− 2

≤ |x2 − x1|
N − 2

< ε.

[3.] Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

1. Statement: If f : R→ R is not differentiable at c ∈ R then f is not continuous at c.

FALSE. The function f(x) = |x| is not differentiable at c = 0 but it is continuous there.

2. Statement: If g : [0, 1] → R is a continuous function such that g(0) = 1 and g(1) = 0.
then there is a point c ∈ [0, 1] such that c = g(c).

TRUE. Let w(x) = x− g(x) which is a difference of continuous functions, hence continuous
on [0, 1]. w(0) = 0 − g(0) = −1. w(1) = 1 − g(1) = 1. By the intermediate value theorem
there is c ∈ [0, 1] so that w(c) = 0. Thus for this c, c = g(c).
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3. Statement: If h : (0, 1)→ R is continuous and bounded, then it is uniformly continuous.

FALSE. The function h(x) = sin(1/x) is continuous and bounded on (0, 1) but it is not
uniformly continuous. If it were uniformly continuous, it would have a continuous extension
to H : [0, 1]→ R such that H(x) = h(x) for all x ∈ (0, 1). But H cannot be continuous at
zero. The sequence xn = 1/(πn + π/2) tends to zero as n → ∞ but H(xn) = (−1)n does
not converge to H(0) as n→∞ because it doesn’t even converge.

[4.] Let : R → R be a function. State the definition: f is continuous at a ∈ R. Show that if
f : R → R is continuous at a ∈ R, then there exist positive constants M and δ > 0 so that
|f(x)| ≤M for all x ∈ R such that a− δ < x < a+ δ.

Definition: f is continuous on R if for every a ∈ R and every ε > 0 there is a δ > 0 such that
|f(x)− f(a)| < ε whenever x ∈ R satisfies |x− c| < δ.

Let ε = 1 and apply continuity. There is a δ > 0 so that |f(x)− f(a)| < ε whenever the real
number x satisfies a− δ < x < a+ δ. For such x,

|f(x)| = |f(a) + f(x)− f(a)| ≤ |f(a)|+ |f(x)− f(a)| < |f(a)|+ ε ≤ |f(a)|+ 1 = M.

Thus we have established the desired estimate with this δ and M = |f(a)|+ 1.

[5.] Let f, fn : R→ R be functions for all n ∈ N. State the definition: fn converges pointwise to
f as n→∞; State the definition: fn converges uniformly to f as n→∞. Let fn(x) = 1

1+n2+x2 .
Does fn → 0 pointwise? Does fn → 0 uniformly? Why?

Definition: fn converges to f pointwise as n→∞ in R iff for every x ∈ R, lim
n→∞

fn(x) = f(x).

In other words, (∀x ∈ R)(∀ε > 0)(∃N ∈ R)(∀n ∈ N)(n > N =⇒ |fn(x)− f(x)| < ε).
Definition: fn converges to f uniformly as n→∞ in R iff

(∀ε > 0)(∃N ∈ R)(∀x ∈ R)(∀n ∈ N)(n > N =⇒ |fn(x)− f(x)| < ε).
To see that the convergence is pointwise, we choose x ∈ R. Then, using limit theorems,

lim
n→∞

fn(x) = lim
n→∞

1
1 + n2 + x2

= lim
n→∞

1
n2

1
n2 + 1 + x2

n2

=
0

0 + 1 + 0
= 0.

To see that the convergence is also uniform, choose ε > 0. Let N = 1√
ε
. Then for any choice

of x ∈ R and n ∈ N such that n > N we have

|fn(x)− 0| =
∣∣∣∣ 1
1 + n2 + x2

∣∣∣∣ ≤ 1
1 + n2

<
1
N2

= ε.
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