Math 3210 § 2.	Third Midterm Exam	Name:
Treibergs		November 11, 2009

[1.] Using just the definition of derivative, show that $f(x) = \frac{1}{\sqrt{x}}$ is differentiable at c = 9 and find f'(9).

The derivative exists if the limit of the difference quotient exists. Since x > 0 as $x \to 9$, by the "workhorse theorem," the limit of the quotient of products exists and is the quotient of the products of the limits. Hence f is differentiable and its derivative is

$$\lim_{x \to 9} \frac{f(x) - f(9)}{x - 9} = \lim_{x \to 9} \frac{\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{9}}}{x - 9} = \lim_{x \to 9} \frac{\sqrt{9} - \sqrt{x}}{\sqrt{x}\sqrt{9}(x - 9)} = \lim_{x \to 9} \frac{(\sqrt{9} - \sqrt{x})(\sqrt{9} + \sqrt{x})}{\sqrt{x}\sqrt{9}(x - 9)(\sqrt{9} + \sqrt{x})} = \lim_{x \to 9} \frac{1}{\sqrt{x}\sqrt{9}(\sqrt{9} + \sqrt{x})} = \lim_{x \to 9} \frac{1}{\sqrt{x}\sqrt{9}(\sqrt{9} + \sqrt{x})} = -\frac{1}{2 \cdot 9^{3/2}} = -\frac{1}{54} = f'(9).$$

[2.] State the definition: $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy Sequence. Let $x_1 \in \mathbb{R}$ be any number. Define the sequence recursively by $x_{n+1} = 3 - \frac{1}{2}x_n$ for all $n \in \mathbb{N}$. Show that $|x_{n+2} - x_{n+1}| \leq \frac{1}{2}|x_{n+1} - x_n|$ for all $n \in \mathbb{N}$. Using the definition, show that this $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy Sequence.

Definition: $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ is a Cauchy Sequence if for every $\epsilon > 0$ there is an $N\in\mathbb{R}$ such that $|x_k - x_\ell| < \epsilon$ whenever $k, \ell \in \mathbb{R}$ satisfy $k, \ell > N$.

Computing for each n,

$$|x_{n+2} - x_{n+1}| = \left|3 - \frac{1}{2}x_{n+1} - \left(3 - \frac{1}{2}x_n\right)\right| = \frac{1}{2}|x_{n+1} - x_n|.$$

Thus, by induction, it follows that for each $n \in \mathbb{N}$,

$$|x_{n+1} - x_n| \le \frac{1}{2^{n-1}} |x_2 - x_1|.$$

To complete the argument that the sequence is Cauchy, choose $\epsilon > 0$. Let $N = 3 + \frac{|x_2 - x_1|}{\epsilon}$. Then, if $k, \ell \in \mathbb{N}$ satisfy $k, \ell > N$ either $k = \ell$ so $|x_k - x_\ell| = 0 < \epsilon$ or we may assume, after swapping if necessary, that $k > \ell$. Then sneaking in intermediate terms, using the inequality above and the formula for a geometric sum $1 + r + \cdots + r^m = \frac{1 - r^{m+1}}{1 - r}$, and $2^n \ge n$,

$$\begin{aligned} |x_k - x_\ell| &= |x_k - x_{k-1} + x_{k-1} - \dots - x_\ell| \le |x_k - x_{k-1}| + |x_{k-1} - x_{k-2}| + \dots + |x_{\ell+1} - x_\ell| \le \\ \left(\frac{1}{2^{k-2}} + \frac{1}{2^{k-3}} + \dots + \frac{1}{2^{\ell-1}}\right) |x_2 - x_1| = \left(\frac{1}{2^{\ell-2}} - \frac{1}{2^{k-2}}\right) |x_2 - x_1| \le \frac{|x_2 - x_1|}{\ell - 2} \le \frac{|x_2 - x_1|}{N - 2} < \epsilon. \end{aligned}$$

[3.] Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.

- 1. Statement: If $f : \mathbb{R} \to \mathbb{R}$ is not differentiable at $c \in \mathbb{R}$ then f is not continuous at c. FALSE. The function f(x) = |x| is not differentiable at c = 0 but it is continuous there.
- 2. Statement: If $g : [0,1] \to \mathbb{R}$ is a continuous function such that g(0) = 1 and g(1) = 0. then there is a point $c \in [0,1]$ such that c = g(c).

TRUE. Let w(x) = x - g(x) which is a difference of continuous functions, hence continuous on [0, 1]. w(0) = 0 - g(0) = -1. w(1) = 1 - g(1) = 1. By the intermediate value theorem there is $c \in [0, 1]$ so that w(c) = 0. Thus for this c, c = g(c).

3. Statement: If $h: (0,1) \to \mathbb{R}$ is continuous and bounded, then it is uniformly continuous.

FALSE. The function $h(x) = \sin(1/x)$ is continuous and bounded on (0, 1) but it is not uniformly continuous. If it were uniformly continuous, it would have a continuous extension to $H: [0,1] \to \mathbb{R}$ such that H(x) = h(x) for all $x \in (0,1)$. But H cannot be continuous at zero. The sequence $x_n = 1/(\pi n + \pi/2)$ tends to zero as $n \to \infty$ but $H(x_n) = (-1)^n$ does not converge to H(0) as $n \to \infty$ because it doesn't even converge.

[4.] Let : $\mathbb{R} \to \mathbb{R}$ be a function. State the definition: f is continuous at $a \in \mathbb{R}$. Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$, then there exist positive constants M and $\delta > 0$ so that $|f(x)| \leq M$ for all $x \in \mathbb{R}$ such that $a - \delta < x < a + \delta$.

Definition: f is continuous on \mathbb{R} if for every $a \in \mathbb{R}$ and every $\epsilon > 0$ there is a $\delta > 0$ such that $|f(x) - f(a)| < \epsilon$ whenever $x \in \mathbb{R}$ satisfies $|x - c| < \delta$.

Let $\epsilon = 1$ and apply continuity. There is a $\delta > 0$ so that $|f(x) - f(a)| < \epsilon$ whenever the real number x satisfies $a - \delta < x < a + \delta$. For such x,

$$|f(x)| = |f(a) + f(x) - f(a)| \le |f(a)| + |f(x) - f(a)| < |f(a)| + \epsilon \le |f(a)| + 1 = M.$$

Thus we have established the desired estimate with this δ and M = |f(a)| + 1.

[5.] Let $f, f_n : \mathbb{R} \to \mathbb{R}$ be functions for all $n \in \mathbb{N}$. State the definition: f_n converges pointwise to f as $n \to \infty$; State the definition: f_n converges uniformly to f as $n \to \infty$. Let $f_n(x) = \frac{1}{1+n^2+x^2}$. Does $f_n \to 0$ pointwise? Does $f_n \to 0$ uniformly? Why?

Definition: f_n converges to f pointwise as $n \to \infty$ in \mathbb{R} iff for every $x \in \mathbb{R}$, $\lim_{n \to \infty} f_n(x) = f(x)$. In other words, $(\forall x \in \mathbb{R})(\forall \varepsilon > 0)(\exists N \in \mathbb{R})(\forall n \in \mathbb{N})(n > N \implies |f_n(x) - f(x)| < \epsilon)$.

Definition: f_n converges to f uniformly as $n \to \infty$ in \mathbb{R} iff $(\forall \varepsilon > 0)(\exists N \in \mathbb{R})(\forall x \in \mathbb{R})(\forall n \in \mathbb{N})(n > N \implies |f_n(x) - f(x)| < \epsilon).$

To see that the convergence is pointwise, we choose $x \in \mathbb{R}$. Then, using limit theorems,

 $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1}{1 + n^2 + x^2} = \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^2} + 1 + \frac{x^2}{n^2}} = \frac{0}{0 + 1 + 0} = 0.$

To see that the convergence is also uniform, choose $\epsilon > 0$. Let $N = \frac{1}{\sqrt{\epsilon}}$. Then for any choice of $x \in \mathbb{R}$ and $n \in \mathbb{N}$ such that n > N we have

$$|f_n(x) - 0| = \left|\frac{1}{1 + n^2 + x^2}\right| \le \frac{1}{1 + n^2} < \frac{1}{N^2} = \varepsilon.$$