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1. Let {an}n∈N be a real sequence and L ∈ R. State the definition: L = lim
n→∞

an. Guess the limit. Then

use the definition of limit to prove that your guess is correct: limn→∞
4n+3
2n+1 .

an → L as n → ∞ means that for all ε > 0 there is an N ∈ R such that |an − L| < ε whenever
n > N .

We show that an → L = 2 as n→∞ Choose ε > 0. Let N = 1
2ε . If n > N then

|an − L| =
∣∣∣∣4n+ 3
2n+ 1

− 2
∣∣∣∣ = ∣∣∣∣ (4n+ 3)− (4n+ 2)

2n+ 1

∣∣∣∣ = 1
2n+ 1

<
1
2n

<
1

2N
=

1
2/(2ε)

= ε.

2. State the definition: m = supE. Consider the union of intervals E =
⋃

n∈N

(
n

n+1 ,
n+1
n+2

)
. Find supE

and prove that it is the supremum.
m = supE means m is an upper bound for E, i.e., (∀x ∈ E)(x ≤ m), and m is the least of upper

bounds, i.e., (∀ε > 0)(∃x ∈ E)(m− ε < x).
For the given set, 1 = supE. To see that 1 is an upper bound, choose x ∈ E. Hence x ∈

(
n

n+1 ,
n+1
n+2

)
for some n ∈ N. For this n, x < n+1

n+2 < n+2
n+2 = 1. Thus x ≤ 1 for all x ∈ E. To see that m is least

among upper bounds, for each n ∈ N, let qn = 1
2

(
n

n+1 + n+1
n+2

)
. Thus qn ∈

(
n

n+1 ,
n+1
n+2

)
(by Problem

3a.) Hence qn ∈ E. Now choose ε > 0. By the Archimedean Property, there is an n ∈ N such that

n > 1
ε . For this n, 1− ε < 1− 1

n
< 1− 1

n+ 1
=

n

n+ 1
< qn.

Thus there is a qn ∈ E such that 1− ε < qn.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a
counterexample.

a. Statement. If x, y ∈ R are such that x < y then x < x+y
2 < y.

TRUE. Adding x to both sides of x < y implies x + x < y + x implies x = 1
2 (x + x) < 1

2 (x + y).
Similarly, adding y to both sides of x < y implies x+ y < y + y implies 1

2 (x+ y) < 1
2 (y + y) = y.

b. Statement. Let {an} and {bn} be real, convergent sequences such that an < bn for all n ∈ N.
Then limn→∞ an < limn→∞ bn.

FALSE. Let an = 0 and bn = 1
n for all n ∈ N. Then an < bn for all n.

However, limn→∞ an = 0 = limn→∞ bn.
c. Statement. If f, g : R→ R are functions that are bounded below, then

infR f + infR g = infR(f + g).
FALSE. Let f(x) = sinx and g(x) = − sinx. Then infR f + infR g = (−1) + (−1) = −2 but for all

x, f(x) + g(x) = 0 so infR(f + g) = 0.
4. Let A = {x ∈ R : x2 < 2x + 1 }. Show that A is nonempty. Show that A is bounded above. What
is the least upper bound of A? (You don’t have to prove it.) Does the set A have a maximum? Why or
why not?

A is nonempty since 2 ∈ A because 4 = 22 < 2 · 2 + 1 = 5.
A is bounded above by, say, 3. If not, there is x ∈ A so that 3 < x. But then 0 < 3 − 1 < x − 1

so (3 − 1)2 < (x − 1)2 so 2 = (3 − 1)2 − 2 < (x − 1)2 − 2 = x2 − 2x − 1 < 0 because x ∈ A. This is a
contradiction, so 3 is an upper bound.

m = supA is the positive root of m2 − 2m− 1 = 0 which by quadratic formula is

m = 2+
√

22−4(1)(−1)

2 = 1 +
√

2. For m = supA to be its maximum, we would need that m ∈ A. But
m2 = 2m+ 1 so m /∈ A. Thus A does not have a maximum.
5. Prove that if x, y ∈ R are numbers such that for all positive RATIONAL numbers r > 0 we have
|x− y| < r. Then x = y.

Proof by contrapositive. Suppose that x 6= y. Then 0 < |x−y|. By the Archimedean Property, there
is an n ∈ N so that 1

n < |x − y|. Then r = 1
n > 0 is a positive rational number such that r ≤ |x − y|.

Thus we have established the statement (∃r ∈ Q)(r > 0 and |x − y| ≥ r). But this is the negation of
the hypothesis in the theorem which is (∀r ∈ Q)(r > 0 =⇒ |x− y| < r).
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