Math 3210	§ 2.	Second Midterm Exam
Treibergs		Name: Solutions
	October 7, 2009	

1. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a real sequence and $L \in \mathbb{R}$. State the definition: $L=\lim _{n \rightarrow \infty} a_{n}$. Guess the limit. Then use the definition of limit to prove that your guess is correct: $\lim _{n \rightarrow \infty} \frac{4 n+3}{2 n+1}$.
$a_{n} \rightarrow L$ as $n \rightarrow \infty$ means that for all $\varepsilon>0$ there is an $N \in \mathbb{R}$ such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n>N$.

We show that $a_{n} \rightarrow L=2$ as $n \rightarrow \infty$ Choose $\varepsilon>0$. Let $N=\frac{1}{2 \varepsilon}$. If $n>N$ then

$$
\left|a_{n}-L\right|=\left|\frac{4 n+3}{2 n+1}-2\right|=\left|\frac{(4 n+3)-(4 n+2)}{2 n+1}\right|=\frac{1}{2 n+1}<\frac{1}{2 n}<\frac{1}{2 N}=\frac{1}{2 /(2 \varepsilon)}=\varepsilon .
$$

2. State the definition: $m=\sup E$. Consider the union of intervals $E=\bigcup_{n \in \mathbb{N}}\left(\frac{n}{n+1}, \frac{n+1}{n+2}\right)$. Find $\sup E$ and prove that it is the supremum.
$m=\sup E$ means m is an upper bound for E, i.e., $(\forall x \in E)(x \leq m)$, and m is the least of upper bounds, i.e., $(\forall \epsilon>0)(\exists x \in E)(m-\epsilon<x)$.

For the given set, $1=\sup E$. To see that 1 is an upper bound, choose $x \in E$. Hence $x \in\left(\frac{n}{n+1}, \frac{n+1}{n+2}\right)$ for some $n \in \mathbb{N}$. For this $n, x<\frac{n+1}{n+2}<\frac{n+2}{n+2}=1$. Thus $x \leq 1$ for all $x \in E$. To see that m is least among upper bounds, for each $n \in \mathbb{N}$, let $q_{n}=\frac{1}{2}\left(\frac{n}{n+1}+\frac{n+1}{n+2}\right)$. Thus $q_{n} \in\left(\frac{n}{n+1}, \frac{n+1}{n+2}\right)$ (by Problem 3a.) Hence $q_{n} \in E$. Now choose $\varepsilon>0$. By the Archimedean Property, there is an $n \in \mathbb{N}$ such that $n>\frac{1}{\varepsilon}$. For this $n, 1-\varepsilon<1-\frac{1}{n}<1-\frac{1}{n+1}=\frac{n}{n+1}<q_{n}$.
Thus there is a $q_{n} \in E$ such that $1-\varepsilon<q_{n}$.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
a. Statement. If $x, y \in \mathbb{R}$ are such that $x<y$ then $x<\frac{x+y}{2}<y$.

TRUE. Adding x to both sides of $x<y$ implies $x+x<y+x$ implies $x=\frac{1}{2}(x+x)<\frac{1}{2}(x+y)$. Similarly, adding y to both sides of $x<y$ implies $x+y<y+y$ implies $\frac{1}{2}(x+y)<\frac{1}{2}(y+y)=y$.
b. Statement. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be real, convergent sequences such that $a_{n}<b_{n}$ for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} a_{n}<\lim _{n \rightarrow \infty} b_{n}$.

FALSE. Let $a_{n}=0$ and $b_{n}=\frac{1}{n}$ for all $n \in \mathbb{N}$. Then $a_{n}<b_{n}$ for all n. However, $\lim _{n \rightarrow \infty} a_{n}=0=\lim _{n \rightarrow \infty} b_{n}$.
c. Statement. If $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are functions that are bounded below, then $\inf _{\mathbb{R}} f+\inf _{\mathbb{R}} g=\inf _{\mathbb{R}}(f+g)$.

FALSE. Let $f(x)=\sin x$ and $g(x)=-\sin x$. Then $^{\inf } \mathbb{R}_{\mathbb{R}} f+\inf _{\mathbb{R}} g=(-1)+(-1)=-2$ but for all $x, f(x)+g(x)=0$ so $\inf _{\mathbb{R}}(f+g)=0$.
4. Let $A=\left\{x \in \mathbb{R}: x^{2}<2 x+1\right\}$. Show that A is nonempty. Show that A is bounded above. What is the least upper bound of A? (You don't have to prove it.) Does the set A have a maximum? Why or why not?
A is nonempty since $2 \in A$ because $4=2^{2}<2 \cdot 2+1=5$.
A is bounded above by, say, 3 . If not, there is $x \in A$ so that $3<x$. But then $0<3-1<x-1$ so $(3-1)^{2}<(x-1)^{2}$ so $2=(3-1)^{2}-2<(x-1)^{2}-2=x^{2}-2 x-1<0$ because $x \in A$. This is a contradiction, so 3 is an upper bound.
$m=\sup A$ is the positive root of $m^{2}-2 m-1=0$ which by quadratic formula is $m=\frac{2+\sqrt{2^{2}-4(1)(-1)}}{2}=1+\sqrt{2}$. For $m=\sup A$ to be its maximum, we would need that $m \in A$. But $m^{2}=2 m+1$ so $m \notin A$. Thus A does not have a maximum.
5. Prove that if $x, y \in \mathbb{R}$ are numbers such that for all positive RATIONAL numbers $r>0$ we have $|x-y|<r$. Then $x=y$.

Proof by contrapositive. Suppose that $x \neq y$. Then $0<|x-y|$. By the Archimedean Property, there is an $n \in \mathbb{N}$ so that $\frac{1}{n}<|x-y|$. Then $r=\frac{1}{n}>0$ is a positive rational number such that $r \leq|x-y|$. Thus we have established the statement $(\exists r \in \mathbb{Q})(r>0$ and $|x-y| \geq r)$. But this is the negation of the hypothesis in the theorem which is $(\forall r \in \mathbb{Q})(r>0 \Longrightarrow|x-y|<r)$.

