
Math 3210 § 2.
Treibergs

First Midterm Exam Name: Solutions
September 16, 2009

1. Prove that n! > 2n for all natural numbers n ≥ 4.

Proof. Use induction on n. In the base case n = 4, then
Lhs = 4! = 4 · 3 · 2 · 1 = 24 > 16 = 24 = Rhs.

Induction case. Assume that for any n ≥ 4 we have n! > 2n. Then by the induction
hypothesis and n+ 1 ≥ 2,

(n+ 1)! = (n+ 1)n! > (n+ 1)2n ≥ 2 · 2n = 2n+1.

2. Using only the axioms for the field (F,+, ·), show that for all x, y ∈ F such that x 6= 0,
y 6= 0 and xy 6= 0 we have (xy)−1 = y−1x−1.

Proof. We first prove the following Lemma.

Lemma 1. If p, q ∈ F such that q 6= 0 and pq = 1 then p = q−1.

Proof of Lemma. Since q 6= 0 there is q−1 ∈ F by multiplicative inverse axiom (M4).

pq = 1 =⇒ (pq)q−1 = 1 · q−1 Multiply by q−1;

=⇒ p(qq−1) = 1 · q−1 Associativity of multiplication (M2);

=⇒ p(q−1q) = 1 · q−1 Commutativity of multiplication (M1);

=⇒ p · 1 = 1 · q−1 Multiplicative inverse (M4);

=⇒ 1 · p = 1 · q−1 Commutativity of multiplication (M1);

=⇒ p = q−1 Multiplicative identity (M3).

Proof. x 6= 0 and y 6= 0 so x−1 and y−1 exist by the multiplicative inverse axiom (M4). Let
p = y−1x−1 and q = xy 6= 0 by assumption. Then

pq = (y−1x−1)(xy)

= y−1
(
x−1(xy)

)
Associativity of multiplication (M2);

= y−1
(
(x−1x)y

)
Associativity of multiplication (M2);

= y−1(1 · y) Multiplicative inverse (M4);

= y−1y Multiplicative identity (M3);
= 1 Multiplicative inverse (M4).

Hence, by the lemma, y−1x−1 = p = q−1 = (xy)−1, as to be shown.

3. Determine whether the following statements are true or false. If true, give a proof. If false,
give a counterexample.

(a) Statement. If A,B,C ⊂ X are subsets then A\B = C implies A = B ∪ C.
False. e.g., take X = R, A = [0, 2], B = [1, 3] so C = [0, 1). But then A 6= B ∪ C =
[0, 3].

(b) Statement. Suppose that f : X → Y and g : Y → Z are functions such that the
composite g ◦ f : X → Z is one-to-one. Then f : X → Y is one-to-one.
True. Choose x1, x2 ∈ X such that f(x1) = f(x2). Apply g to both sides g ◦ f(x1) =
g ◦ f(x2). But g ◦ f is one-to-one so x1 = x2. Thus f is one-to-one.
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(c) Statement. If f : X → Y is onto, then for all subsets A,B ⊂ X we have f(A∩B) =
f(A) ∩ f(B).
False. e.g., take X = Y = R and f(x) = x2(x−1) which is onto. But for A = (−1, 0)
and B = (0, 1) we have A∩B = ∅ so f(A∩B) = ∅ but f(A)∩f(B) = (−2, 0)∩[− 4

27 , 0) =
[− 4

27 , 0) 6= ∅ = f(A ∩B).

4. Let f : X → Y be a function and Vα ⊂ Y be a subset for each α ∈ A. Show

f−1
( ⋂

α∈A Vα

)
=
⋂
α∈A f

−1 (Vα) .

Proof. We show x is in the left set iff x is in the right set.

x ∈ f−1
( ⋂
α∈A

Vα

)
⇐⇒ f(x) ∈

⋂
α∈A

Vα

⇐⇒ (∀α ∈ A) (f(x) ∈ Vα)

⇐⇒ (∀α ∈ A)
(
x ∈ f−1(Vα)

)
⇐⇒ x ∈

⋂
α∈A

f−1
(
Vα

)
.

5. The text describes the rational numbers as equivalence classes of symbols

Q =
{
p
q : p, q ∈ Z such that q 6= 0

} /
∼

where p
q ∼

n
m if and only if pm = nq. In order to construct a function on the rationals, the

following rule is proposed: for each
[
a
b

]
∈ Q, let f

([
a
b

])
=
[

a2

a2+b2

]
Determine whether this

rule actually defines a function f : Q → Q. If f is well-defined, prove it. If not, explain
why not.

f is well-defined. Note that since b 6= 0 then a2 + b2 6= 0 so that the symbol a2

a2+b2

represents an equivalence class in Q. Choose another representative p
q ∈

[
a
b

]
to show that

f computed from p
q is equivalent to f computed from a

b . As p
q ∈

[
a
b

]
we have aq = bp. But

then
p2(a2 + b2) = a2p2 + (bp)2 = a2p2 + (aq)2 = a2(p2 + q2).

Thus we have shown that a2

a2+b2 ∼
p2

p2+q2 so f is well-defined.
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