Math 3210 § 2.	First Midterm Exam	Name: Solutions
Treibergs		September 16, 2009

1. Prove that $n! > 2^n$ for all natural numbers $n \ge 4$.

Proof. Use induction on n. In the base case n = 4, then LHS = $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 > 16 = 2^4 =$ RHS.

Induction case. Assume that for any $n \ge 4$ we have $n! > 2^n$. Then by the induction hypothesis and $n+1 \ge 2$,

$$(n+1)! = (n+1)n! > (n+1)2^n \ge 2 \cdot 2^n = 2^{n+1}.$$

2. Using only the axioms for the field $(F, +, \cdot)$, show that for all $x, y \in F$ such that $x \neq 0$, $y \neq 0$ and $xy \neq 0$ we have $(xy)^{-1} = y^{-1}x^{-1}$.

Proof. We first prove the following Lemma.

Lemma 1. If $p, q \in F$ such that $q \neq 0$ and pq = 1 then $p = q^{-1}$.

Proof of Lemma. Since $q \neq 0$ there is $q^{-1} \in F$ by multiplicative inverse axiom (M4).

$pq = 1 \implies (pq)q^{-1} = 1 \cdot q^{-1}$	Multiply by q^{-1} ;
$\implies p(qq^{-1}) = 1 \cdot q^{-1}$	Associativity of multiplication (M2);
$\implies p(q^{-1}q) = 1 \cdot q^{-1}$	Commutativity of multiplication (M1);
$\implies p \cdot 1 = 1 \cdot q^{-1}$	Multiplicative inverse (M4);
$\implies 1 \cdot p = 1 \cdot q^{-1}$	Commutativity of multiplication (M1);
$\implies p = q^{-1}$	Multiplicative identity (M3).

Proof. $x \neq 0$ and $y \neq 0$ so x^{-1} and y^{-1} exist by the multiplicative inverse axiom (M4). Let $p = y^{-1}x^{-1}$ and $q = xy \neq 0$ by assumption. Then

$pq = (y^{-1}x^{-1})(xy)$	
$= y^{-1} \bigl(x^{-1} (xy) \bigr)$	Associativity of multiplication (M2);
$= y^{-1} \left((x^{-1}x)y \right)$	Associativity of multiplication (M2);
$= y^{-1}(1 \cdot y)$	Multiplicative inverse (M4);
$=y^{-1}y$	Multiplicative identity (M3);
= 1	Multiplicative inverse (M4).

Hence, by the lemma, $y^{-1}x^{-1} = p = q^{-1} = (xy)^{-1}$, as to be shown.

- 3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
 - (a) **Statement.** If $A, B, C \subset X$ are subsets then $A \setminus B = C$ implies $A = B \cup C$. FALSE. e.g., take $X = \mathbb{R}$, A = [0, 2], B = [1, 3] so C = [0, 1). But then $A \neq B \cup C = [0, 3]$.
 - (b) **Statement.** Suppose that $f: X \to Y$ and $g: Y \to Z$ are functions such that the composite $g \circ f: X \to Z$ is one-to-one. Then $f: X \to Y$ is one-to-one. TRUE. Choose $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Apply g to both sides $g \circ f(x_1) = g \circ f(x_2)$. But $g \circ f$ is one-to-one so $x_1 = x_2$. Thus f is one-to-one.

- (c) **Statement.** If $f: X \to Y$ is *onto*, then for all subsets $A, B \subset X$ we have $f(A \cap B) = f(A) \cap f(B)$. FALSE. *e.g.*, take $X = Y = \mathbb{R}$ and $f(x) = x^2(x-1)$ which is onto. But for A = (-1, 0) and B = (0, 1) we have $A \cap B = \emptyset$ so $f(A \cap B) = \emptyset$ but $f(A) \cap f(B) = (-2, 0) \cap [-\frac{4}{27}, 0) = [-\frac{4}{27}, 0) \neq \emptyset = f(A \cap B)$.
- 4. Let $f: X \to Y$ be a function and $V_{\alpha} \subset Y$ be a subset for each $\alpha \in A$. Show

$$f^{-1}\Big(\bigcap_{\alpha\in A}V_{\alpha}\Big)=\bigcap_{\alpha\in A}f^{-1}(V_{\alpha}).$$

Proof. We show x is in the left set iff x is in the right set.

$$x \in f^{-1} \Big(\bigcap_{\alpha \in A} V_{\alpha} \Big) \iff f(x) \in \bigcap_{\alpha \in A} V_{\alpha}$$
$$\iff (\forall \alpha \in A) \ (f(x) \in V_{\alpha})$$
$$\iff (\forall \alpha \in A) \ (x \in f^{-1}(V_{\alpha}))$$
$$\iff x \in \bigcap_{\alpha \in A} f^{-1} \Big(V_{\alpha} \Big).$$

5. The text describes the rational numbers as equivalence classes of symbols

$$\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \text{ such that } q \neq 0 \right\} \Big/ \sim$$

where $\frac{p}{q} \sim \frac{n}{m}$ if and only if pm = nq. In order to construct a function on the rationals, the following rule is proposed: for each $\left[\frac{a}{b}\right] \in \mathbb{Q}$, let $f\left(\left[\frac{a}{b}\right]\right) = \left[\frac{a^2}{a^2+b^2}\right]$ Determine whether this rule actually defines a function $f : \mathbb{Q} \to \mathbb{Q}$. If f is well-defined, prove it. If not, explain why not.

f IS WELL-DEFINED. Note that since $b \neq 0$ then $a^2 + b^2 \neq 0$ so that the symbol $\frac{a^2}{a^2+b^2}$ represents an equivalence class in \mathbb{Q} . Choose another representative $\frac{p}{q} \in \begin{bmatrix} a \\ b \end{bmatrix}$ to show that f computed from $\frac{p}{q}$ is equivalent to f computed from $\frac{a}{b}$. As $\frac{p}{q} \in \begin{bmatrix} a \\ b \end{bmatrix}$ we have aq = bp. But then

$$p^{2}(a^{2}+b^{2}) = a^{2}p^{2} + (bp)^{2} = a^{2}p^{2} + (aq)^{2} = a^{2}(p^{2}+q^{2}).$$

Thus we have shown that $\frac{a^2}{a^2+b^2} \sim \frac{p^2}{p^2+q^2}$ so f is well-defined.