\qquad

1. Prove that $n!>2^{n}$ for all natural numbers $n \geq 4$.

Proof. Use induction on n. In the base case $n=4$, then
LHS $=4!=4 \cdot 3 \cdot 2 \cdot 1=24>16=2^{4}=$ RHS.
Induction case. Assume that for any $n \geq 4$ we have $n!>2^{n}$. Then by the induction hypothesis and $n+1 \geq 2$,

$$
(n+1)!=(n+1) n!>(n+1) 2^{n} \geq 2 \cdot 2^{n}=2^{n+1}
$$

2. Using only the axioms for the field $(F,+, \cdot)$, show that for all $x, y \in F$ such that $x \neq 0$, $y \neq 0$ and $x y \neq 0$ we have $(x y)^{-1}=y^{-1} x^{-1}$.
Proof. We first prove the following Lemma.
Lemma 1. If $p, q \in F$ such that $q \neq 0$ and $p q=1$ then $p=q^{-1}$.
Proof of Lemma. Since $q \neq 0$ there is $q^{-1} \in F$ by multiplicative inverse axiom (M4).

$$
\begin{aligned}
p q=1 & \Longrightarrow(p q) q^{-1}=1 \cdot q^{-1} & & \text { Multiply by } q^{-1} ; \\
& \Longrightarrow p\left(q q^{-1}\right)=1 \cdot q^{-1} & & \text { Associativity of multiplication (M2); } \\
& \Longrightarrow p\left(q^{-1} q\right)=1 \cdot q^{-1} & & \text { Commutativity of multiplication (M1); } \\
& \Longrightarrow p \cdot 1=1 \cdot q^{-1} & & \text { Multiplicative inverse (M4); } \\
& \Longrightarrow 1 \cdot p=1 \cdot q^{-1} & & \text { Commutativity of multiplication (M1); } \\
& \Longrightarrow p=q^{-1} & & \text { Multiplicative identity (M3). }
\end{aligned}
$$

Proof. $x \neq 0$ and $y \neq 0$ so x^{-1} and y^{-1} exist by the multiplicative inverse axiom (M4). Let $p=y^{-1} x^{-1}$ and $q=x y \neq 0$ by assumption. Then

$$
\begin{aligned}
p q & =\left(y^{-1} x^{-1}\right)(x y) & & \\
& =y^{-1}\left(x^{-1}(x y)\right) & & \text { Associativity of multiplication (M2); } \\
& =y^{-1}\left(\left(x^{-1} x\right) y\right) & & \text { Associativity of multiplication (M2); } \\
& =y^{-1}(1 \cdot y) & & \text { Multiplicative inverse (M4); } \\
& =y^{-1} y & & \text { Multiplicative identity (M3); } \\
& =1 & & \text { Multiplicative inverse (M4). }
\end{aligned}
$$

Hence, by the lemma, $y^{-1} x^{-1}=p=q^{-1}=(x y)^{-1}$, as to be shown.
3. Determine whether the following statements are true or false. If true, give a proof. If false, give a counterexample.
(a) Statement. If $A, B, C \subset X$ are subsets then $A \backslash B=C$ implies $A=B \cup C$.

FALSE. e.g., take $X=\mathbb{R}, A=[0,2], B=[1,3]$ so $C=[0,1)$. But then $A \neq B \cup C=$ [0, 3].
(b) Statement. Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions such that the composite $g \circ f: X \rightarrow Z$ is one-to-one. Then $f: X \rightarrow Y$ is one-to-one.
True. Choose $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Apply g to both sides $g \circ f\left(x_{1}\right)=$ $g \circ f\left(x_{2}\right)$. But $g \circ f$ is one-to-one so $x_{1}=x_{2}$. Thus f is one-to-one.
(c) Statement. If $f: X \rightarrow Y$ is onto, then for all subsets $A, B \subset X$ we have $f(A \cap B)=$ $f(A) \cap f(B)$.
FALSE. e.g., take $X=Y=\mathbb{R}$ and $f(x)=x^{2}(x-1)$ which is onto. But for $A=(-1,0)$ and $B=(0,1)$ we have $A \cap B=\emptyset$ so $f(A \cap B)=\emptyset$ but $f(A) \cap f(B)=(-2,0) \cap\left[-\frac{4}{27}, 0\right)=$ $\left[-\frac{4}{27}, 0\right) \neq \emptyset=f(A \cap B)$.
4. Let $f: X \rightarrow Y$ be a function and $V_{\alpha} \subset Y$ be a subset for each $\alpha \in A$. Show

$$
f^{-1}\left(\bigcap_{\alpha \in A} V_{\alpha}\right)=\bigcap_{\alpha \in A} f^{-1}\left(V_{\alpha}\right)
$$

Proof. We show x is in the left set iff x is in the right set.

$$
\begin{aligned}
x \in f^{-1}\left(\bigcap_{\alpha \in A} V_{\alpha}\right) & \Longleftrightarrow f(x) \in \bigcap_{\alpha \in A} V_{\alpha} \\
& \Longleftrightarrow(\forall \alpha \in A)\left(f(x) \in V_{\alpha}\right) \\
& \Longleftrightarrow(\forall \alpha \in A)\left(x \in f^{-1}\left(V_{\alpha}\right)\right) \\
& \Longleftrightarrow x \in \bigcap_{\alpha \in A} f^{-1}\left(V_{\alpha}\right)
\end{aligned}
$$

5. The text describes the rational numbers as equivalence classes of symbols

$$
\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z} \text { such that } q \neq 0\right\} / \sim
$$

where $\frac{p}{q} \sim \frac{n}{m}$ if and only if $p m=n q$. In order to construct a function on the rationals, the following rule is proposed: for each $\left[\frac{a}{b}\right] \in \mathbb{Q}$, let $f\left(\left[\frac{a}{b}\right]\right)=\left[\frac{a^{2}}{a^{2}+b^{2}}\right]$ Determine whether this rule actually defines a function $f: \mathbb{Q} \rightarrow \mathbb{Q}$. If f is well-defined, prove it. If not, explain why not.
f IS WELL-DEFINED. Note that since $b \neq 0$ then $a^{2}+b^{2} \neq 0$ so that the symbol $\frac{a^{2}}{a^{2}+b^{2}}$ represents an equivalence class in \mathbb{Q}. Choose another representative $\frac{p}{q} \in\left[\frac{a}{b}\right]$ to show that f computed from $\frac{p}{q}$ is equivalent to f computed from $\frac{a}{b}$. As $\frac{p}{q} \in\left[\frac{a}{b}\right]$ we have $a q=b p$. But then

$$
p^{2}\left(a^{2}+b^{2}\right)=a^{2} p^{2}+(b p)^{2}=a^{2} p^{2}+(a q)^{2}=a^{2}\left(p^{2}+q^{2}\right)
$$

Thus we have shown that $\frac{a^{2}}{a^{2}+b^{2}} \sim \frac{p^{2}}{p^{2}+q^{2}}$ so f is well-defined.

