Math 3070 § 1.
Treibergs $a \pi$

Solution to devore 4.2 .26
\qquad

Name: Solutions
Oct 16, 2012
(26.) let X be the total medical expenses (in $\$ 1000$'s) incurred by a particular individual during a given year.Suppose that the distribution is well approximated by a continuous one with pdf

$$
f(x)= \begin{cases}\frac{k}{\left(1+\frac{x}{2.5}\right)^{7}}, & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a.) What is the value ofk?
(b.) Graph the pdf of X.
(c.) What is the expected value and standard deviation of the medical expenses?
(d) The individual is covered by an insurance plan that entails a deductible of $\$ 500$ provision (so the first $\$ 500$ of expenses are paid by the individual.) then the plan will pay 80% of any additional expenses exceeding \$ 500, and the maximum payment by the individual (including the deductible amount) is $\$$ 2500. let Y denote the the amount of this individual's medical expenses paid by the insurance company. What is the expectede value of Y ?
(a.) By the total probability formula, substituting $u=1+\frac{x}{2.5}$ yields

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} k\left(1+\frac{x}{2.5}\right)^{-7} d x=k \int_{1}^{\infty} 2.5 u^{-7} d u=2.5 k\left[\frac{u^{-6}}{-6}\right]_{1}^{\infty}=\frac{2.5}{6} k
$$

so that $k=\frac{12}{5}$.
(b.)

(c.) Compute $E(X)$ and $E\left(X^{2}\right)$:

$$
\begin{aligned}
E(X) & =\int_{0}^{\infty} k x\left(1+\frac{x}{2.5}\right)^{-7} d x=k \int_{1}^{\infty} 2.5(2.5 u-2.5) u^{-7} d u=\frac{2.5^{2} k}{30}=\frac{1}{2} \\
E\left(X^{2}\right) & =\int_{0}^{\infty} k x^{2}\left(1+\frac{x}{2.5}\right)^{-7} d x=k \int_{1}^{\infty} 2.5(2.5 u-2,5)^{2} u^{-7} d u=\frac{2.5^{3} k}{60}=\frac{5}{8}
\end{aligned}
$$

so $\mu=E(X)=\frac{1}{2}$ and $\sigma^{2}=E\left(X^{2}\right)-E(X)^{2}=\frac{5}{8}-\frac{1}{4}=\frac{3}{8}$ so $\sigma=\sqrt{\frac{3}{8}}$.
(d.) Follow the hint in the book. The payout $h(x)$ is zero if $x \leq 500$, the deductible amount. Thereafter it pays .8 of the cost over 500 , namely $.8(x-500)$ until the customer has paid $\$ 2500$. If z is the amount where customer has paid exactly $\$ 2500$, then

$$
2500=x-\frac{4}{5}(x-500)
$$

which means $z=10500$. Thereafter the company pays the full difference. Thus

$$
y=h(x)= \begin{cases}0, & \text { if } x \leq 500 \\ \frac{4}{5}(x-500), & \text { if } 500 \leq x \leq 1050 \\ x-2500, & \text { if } 1050 \leq x\end{cases}
$$

Then the expected payout is

$$
\begin{aligned}
E(h(X)) & =\int_{0}^{\infty} h(x) k\left(1+\frac{x}{2.5}\right)^{-7} d x \\
& =k \int_{500}^{10500} \frac{4}{5}(x-500)\left(1+\frac{x}{2.5}\right)^{-7} d x+k \int_{10500}^{\infty}(x-2500)\left(1+\frac{x}{2.5}\right)^{-7} d x \\
& =\frac{4 k}{5} \int_{201}^{4201}(2.5 u-502.5) u^{-7} d u+k \int_{4201}^{\infty}\left((2.5 u-2502.5) u^{-7} d u\right. \\
& =\frac{12}{5}\left\{\frac{2}{5}\left(\frac{1}{201^{5}}-\frac{1}{4201^{5}}\right)-\frac{402}{6}\left(\frac{1}{201^{6}}-\frac{1}{4201^{6}}\right)\right\}+\frac{12}{5}\left\{\frac{1}{2 \cdot 4201^{5}}-\frac{2502.5}{6 \cdot 4201^{6}}\right\}
\end{aligned}
$$

