Math 3070 § 1.
Treibergs $a t$

Third Midterm Exam
Name: Solutions
November 16, 2011

Do FOUR of five problems.

1. Suppose that we have a random sample with $n=36$ observations $X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Exp}(\lambda)$ taken from and exponential distribution with $\lambda=.200$. Let \bar{X} denote the sample mean. What sampling distribution does \bar{X} have? Why? What is the standard error $\sigma_{\bar{X}}$? What is the probability that the sample mean \bar{X} will exceed 6.00 ?

The mean and standard deviation of an exponential variable with $\lambda=\frac{1}{5}$ is $\mu_{X}=\sigma_{X}=\frac{1}{\lambda}=5$. Since $n=36>30$, by the rule of thumb we may treat the sample average \bar{X} as being an approximately normal variable from $N\left(\mu_{\bar{X}}, \sigma_{\bar{X}}\right)$, where $\mu_{\bar{X}}=\mu_{X}=5$ and the standard error is $\sigma_{\bar{X}}=\frac{\sigma_{X}}{\sqrt{n}}=\frac{5}{6}$.

To compute the approximate probability, we standardize

$$
\begin{aligned}
\mathrm{P}(\bar{X}>6.000) & \approx \mathrm{P}\left(Z=\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}>\frac{6.000-5.000}{5 / 6}\right) \\
& =\mathrm{P}(Z>1.2)=\mathrm{P}(Z<-1.2)=\Phi(-1.2)=.1151 .
\end{aligned}
$$

2. Let X and Y be random variables whose joint pdf is $f(x, y)$. Find the marginal densities $f_{X}(x)$ and $f_{Y}(y)$. Are X and Y independent? Why? Find $\operatorname{Cov}(X, Y)$.

$$
f(x, y)= \begin{cases}x+y, & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

The marginal density is

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y= \begin{cases}\int_{0}^{1} x+y d y=x+\frac{1}{2}, & \text { if } 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

By symmetry, $f_{Y}(y)=f_{X}(y) . X$ and Y are not independent, because e.g., for $0 \leq x, y \leq 1$,

$$
f_{X}(x) f_{Y}(y)=\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=x y+\frac{x}{2}+\frac{y}{2}+\frac{1}{4} \neq x+y=f(x, y)
$$

The expectation

$$
\mathrm{E}(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x\left(x+\frac{1}{2}\right) d x=\int_{0}^{1}\left(x^{2}+\frac{x}{2}\right) d x=\left[\frac{x^{3}}{3}+\frac{x^{2}}{4}\right]_{0}^{1}=\frac{7}{12}
$$

By symmetry, $\mathrm{E}(Y)=\mathrm{E}(X)$. Expected $X Y$ is

$$
\mathrm{E}(X Y)=\int_{0}^{1} \int_{0}^{1} x y(x+y) d y d x=\int_{0}^{1} \frac{x^{2}}{2}+\frac{x}{3} d x=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
$$

The covariance is thus $\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)=\frac{1}{3}-\frac{7}{12} \cdot \frac{7}{12}=-\frac{1}{144}$.
3. The article "An Evaluation of Football Helmets Under Impact Conditions" (Amer. J. Sports Medicine, 1984) reports that when each football helmet in a random sample of 27 suspension-type helmets was subjected to a certain impact test, 18 showed damage. Let p denote the proportion of of all helmets of this type that would show damage when tested in the prescribed manner. Calculate a 99% two-sided confidence interval for p. What sample size would be required for the width of a 99% CI to be at most .10, irrespective of \hat{p} ?

The estimator is $\hat{p}=\frac{18}{27}=\frac{2}{3}$. Since $n \hat{p}=18$ and $n \hat{q}=9$ we use the score confidence interval that is valid even for small sample sizes. For a $99 \%=1-\alpha$ two sided bound, we need the critical value $z_{\alpha / 2}=z_{.005}=2.576$ from Table A5. The CI is

$$
\frac{\hat{p}+\frac{z_{\alpha / 2}^{2}}{2 n} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}+\frac{z_{\alpha / 2}^{2}}{4 n^{2}}}}{1+\frac{z_{\alpha / 2}^{2}}{n}}=\frac{\frac{2}{3}+\frac{(2.576)^{2}}{2 \cdot 27} \pm 2.576 \sqrt{\frac{\frac{2}{3} \cdot \frac{1}{3}}{27}+\frac{(2.576)^{2}}{4 \cdot 27^{2}}}}{1+\frac{(2.576)^{2}}{27}}=(.422, .846)
$$

We use the width of the traditional interval to estimate n since we expect it to be large. Since $4 \hat{p} \hat{q} \leq 1$ for all \hat{p},

$$
w=2 z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \leq \frac{z_{\alpha / 2}}{\sqrt{n}}
$$

which is less than .1 if

$$
n \geq \frac{z_{\alpha / 2}^{2}}{(.1)^{2}}=\frac{(2.576)^{2}}{(.1)^{2}}=663.5776
$$

The 99% confidence interval will have width at most .10 for $n=664$.
[The study actually reported 37 damaged helmets out of 45 tested.]
4. Let $0<p<1$. A Bernoulli random variable X takes the values $X \in\{0,1\}$ and has the $p m f$ $p(0)=1-p, p(1)=p$ and $p(x)=0$ otherwise. Take a random sample X, Y of two $\operatorname{Bernoulli}(p)$ variables. Consider the family of statistics defined for $0<\alpha<1$ by

$$
\hat{\theta}_{\alpha}=\alpha X+(1-\alpha) Y
$$

Show that the statistics $\hat{\theta}_{\alpha}$ are unbiased estimators for p. Determine the standard errors $s_{\hat{\theta}_{\alpha}}$ of the statistics $\hat{\theta}_{\alpha}$. Among the $\hat{\theta}_{\alpha}$'s with $0<\alpha<1$, which is the best estimator for p and why?

If $X \sim \operatorname{Bernoulli}(p)$ then $\mathrm{E}(X)=p$ and $\mathrm{V}(X)=p q$. Using linearity of expectation, the statistic is an unbiased estimator for p because

$$
\mathrm{E}\left(\hat{\theta}_{\alpha}\right)=\mathrm{E}(\alpha X+(1-\alpha) Y)=\alpha \mathrm{E}(X)+(1-\alpha) \mathrm{E}(Y)=\alpha p+(1-\alpha) p=p
$$

Because of independence of X and Y, the variance is

$$
\mathrm{V}\left(\hat{\theta}_{\alpha}\right)=\mathrm{V}(\alpha X+(1-\alpha) Y)=\alpha^{2} \mathrm{~V}(X)+(1-\alpha)^{2} \mathrm{v}(Y)=\left[\alpha^{2}+(1-\alpha)^{2}\right] p q
$$

Thus the standard error is

$$
\sigma_{\hat{\theta}_{\alpha}}=\sqrt{\alpha^{2} p q+(1-\alpha)^{2} p q}
$$

The best estimator among these unbiased estimators is the one with least variance. As the variance is a positive quadratic function in α, its minimum is where the derivative vanishes,

$$
\frac{d}{d \alpha} \mathrm{~V}\left(\hat{\theta}_{\alpha}\right)=[2 \alpha-2(1-\alpha)] p q=0
$$

or at $\alpha=\frac{1}{2}$. The best estimator is thus $\hat{\theta}_{1 / 2}$.
5. A National Institute of Health study measured the sugar content (in grams) of a random sample of 20 similar single servings of Alpha-Bits cereal. The data is entered into $\mathbf{R ©}$ ©

```
> X <- scan()
1:
11: 11.1 11.7 11.8 12.3 13.3 13.4 13.7
21:
Read 20 items
> mean(X); sd(X)
[1] 11.46
[1] 2.616828
```

Find a 95\% lower confidence bound for the mean sugar content of a single serving. Under what assumptions is your confidence bound valid? Based on the accompanying \mathbf{R} © generated normal PP-Plot, comment on the validity of your assumptions.

Since $n \leq 40$, there are a small number of observations so we use the t-distribution based CI. The degrees of freedom is $\nu=n-1=20-1=19$. The one-sided critical value for confidence level $.95=1-\alpha$ is $t_{\alpha, \nu}=t_{.05,19}=1.729$ from Table A5. The lower confidence bound on μ, the population mean, is using values from the printout,

$$
\bar{X}-t_{\alpha, \nu} \frac{S}{\sqrt{n}}=11.46-1.729 \cdot \frac{2.616828}{\sqrt{20}}=10.45 .
$$

Thus with 95% confidence, $10.45<\mu$.
This confidence bound is valid provided that the sample is taken from an approximately normal distribution. The normal $P P$-plot indicates that the observations line up nicely with the theoretical quantiles, indicating that the data is plausibly normal. (In fact, a normal random number generator was used to generate these data based on the reported \bar{X} and S from the study.)

