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1

Fundamental Theory

1.1 ODEs and Dynamical Systems

Ordinary Differential Equations

An ordinary differential equation (or ODE) is an equation involving derivatives
of an unknown quantity with respect to a single variable. More precisely, suppose
j; n 2 N,E is a Euclidean space, and

F W dom.F / � R �
nC 1 copies
‚ …„ ƒ

E � � � � �E ! R
j : (1.1)

Then annth order ordinary differential equationis an equation of the form

F.t; x.t/; Px.t/; Rx.t/; x.3/.t/; � � � ; x.n/.t// D 0: (1.2)

If I � R is an interval, thenx W I ! E is said to bea solution of(1.2) onI if
x has derivatives up to ordern at everyt 2 I, and those derivatives satisfy (1.2).
Often, we will use notation that suppresses the dependence of x on t . Also, there
will often be side conditions given that narrow down the set of solutions. In these
notes, we will concentrate oninitial conditionswhich prescribex.`/.t0/ for some
fixed t0 2 R (called theinitial time) and some choices of` 2 f0; 1; : : : ; ng. Some
ODE texts examinetwo-point boundary-value problems, in which the value of a
function and its derivatives at two different points are required to satisfy given
algebraic equations, but we won’t focus on them in this one.
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1. FUNDAMENTAL THEORY

First-order Equations

Every ODE can be transformed into an equivalent first-order equation. In partic-
ular, givenx W I ! E, suppose we define

y1 WD x

y2 WD Px
y3 WD Rx
:::

yn WD x.n�1/;

and lety W I ! En be defined byy D .y1; : : : ; yn/. For i D 1; 2; : : : ; n � 1,
define

Gi W R �En �En ! E

by

G1.t; u; p/ WD p1 � u2
G2.t; u; p/ WD p2 � u3
G3.t; u; p/ WD p3 � u4

:::

Gn�1.t; u; p/ WD pn�1 � un;

and, givenF as in (1.1), defineGn W dom.Gn/ � R �En �En ! R
j by

Gn.t; u; p/ WD F.t; u1; : : : ; un; pn/;

where

dom.Gn/ D
˚

.t; u; p/ 2 R �En �En
ˇ
ˇ .t; u1; : : : ; un; pn/ 2 dom.F /

	

:

LettingG W dom.Gn/ � R �En �En ! En�1 � R
j be defined by

G WD

0

B
B
B
B
B
@

G1
G2
G3
:::

Gn

1

C
C
C
C
C
A

;

we see thatx satisfies (1.2) if and only ify satisfiesG.t; y.t/; Py.t// D 0.
2



ODEs and Dynamical Systems

Equations Resolved with Respect to the Derivative

Consider the first-order initial-value problem (or IVP)
8

<̂

:̂

F.t; x; Px/ D 0

x.t0/ D x0

Px.t0/ D p0;

(1.3)

whereF W dom.F / � R � R
n � R

n ! R
n, andx0; p0 are given elements ofRn

satisfyingF.t0; x0; p0/ D 0. The Implicit Function Theorem says that typically
the solutions.t; x; p/ of the (algebraic) equationF.t; x; p/ D 0 near.t0; x0; p0/
form an.nC 1/-dimensional surface that can be parametrized by.t; x/. In other
words, locally the equationF.t; x; p/ D 0 is equivalent to an equation of the
form p D f .t; x/ for somef W dom.f / � R � R

n ! R
n with .t0; x0/ in the

interior of dom.f /. Using thisf , (1.3) is locally equivalent to the IVP
(

Px D f .t; x/

x.t0/ D x0:

Autonomous Equations

Let f W dom.f / � R � R
n ! R

n. The ODE

Px D f .t; x/ (1.4)

is autonomousif f doesn’t really depend ont , i.e., if dom.f / D R�� for some
� � R

n and there is a functiong W � ! R
n such thatf .t; u/ D g.u/ for every

t 2 R and everyu 2 �.
Every nonautonomous ODE is actually equivalent to an autonomous ODE.

To see why this is so, givenx W R ! R
n, definey W R ! R

nC1 by y.t/ D
.t; x1.t/; : : : ; xn.t//, and givenf W dom.f / � R � R

n ! R
n, define a new

function Qf W dom. Qf / � R
nC1 ! R

nC1 by

Qf .p/ D

0

B
B
B
@

1

f1.p1; .p2; : : : ; pnC1//
:::

fn.p1; .p2; : : : ; pnC1//

1

C
C
C
A
;

wheref D .f1; : : : ; fn/
T and

dom. Qf / D
˚

p 2 R
nC1

ˇ
ˇ .p1; .p2; : : : ; pnC1// 2 dom.f /

	

:

Thenx satisfies (1.4) if and only ify satisfiesPy D Qf .y/.
3



1. FUNDAMENTAL THEORY

Because of the discussion above, we will focus our study on first-order au-
tonomous ODEs that are resolved with respect to the derivative. This decision
is not completely without loss of generality, because by converting other sorts
of ODEs into equivalent ones of this form, we may be neglecting some special
structure that might be useful for us to consider. This trade-off between abstract-
ness and specificity is one that you will encounter (and have probably already
encountered) in other areas of mathematics. Sometimes, when transforming the
equation would involve too great a loss of information, we’ll specifically study
higher-order and/or nonautonomous equations.

Dynamical Systems

As we shall see, by placing conditions on the functionf W � � R
n ! R

n and
the pointx0 2 � we can guarantee that the autonomous IVP

(

Px D f .x/

x.0/ D x0
(1.5)

has a solution defined on some intervalI containing0 in its interior, and this so-
lution will be unique (up to restriction or extension). Furthermore, it is possible
to “splice” together solutions of (1.5) in a natural way, and, in fact, get solu-
tions to IVPs with different initial times. These considerations lead us to study a
structure known as adynamical system.

Given� � R
n, a continuous dynamical system (or aflow) on� is a function

' W R �� ! � satisfying:

1. '.0; x/ D x for everyx 2 �;

2. '.s; '.t; x// D '.s C t; x/ for everyx 2 � and everys; t 2 R;

3. ' is continuous.

If f and� are sufficiently “nice” we will be able to define a function' W
R � � ! � by letting '.�; x0/ be the unique solution of (1.5), and this defi-
nition will make' a dynamical system. Conversely, any continuous dynamical
system'.t; x/ that is differentiable with respect tot is generated by an IVP.

Exercise 1Suppose that:

� � � R
n;

4



ODEs and Dynamical Systems

� ' W R �� ! � is a continuous dynamical system;

� @'.t; x/

@t
exists for everyt 2 R and everyx 2 �;

� x0 2 � is given;

� y W R ! � is defined byy.t/ WD '.t; x0/;

� f W � ! R
n is defined byf .p/ WD @'.s; p/

@s

ˇ
ˇ
ˇ
ˇ
sD0

.

Show thaty solves the IVP
(

Py D f .y/

y.0/ D x0:

In these notes we will also discussdiscrete dynamical systems. Given� �
R
n, a discrete dynamical system on� is a function' W Z �� ! � satisfying:

1. '.0; x/ D x for everyx 2 �;

2. '.`; '.m; x// D '.`Cm;x/ for everyx 2 � and everỳ ;m 2 Z;

3. ' is continuous.

There is a one-to-one correspondence between discrete dynamical systems' and
homeomorphisms(continuous functions with continuous inverses)F W � ! �,
this correspondence being given by'.1; �/ D F . If we relax the requirement of
invertibility and take a (possibly noninvertible) continuous functionF W � ! �

and define' W f0; 1; : : :g �� ! � by

'.n; x/ D
n copies

‚ …„ ƒ

F.F.� � � .F .x// � � � //;

then' will almost meet the requirements to be a dynamical system, the only
exception being that property 2, known as thegroup propertymay fail because
'.n; x/ is not even defined forn < 0. We may still call this a dynamical system;
if we’re being careful we may call it asemidynamical system.

In a dynamical system, the set� is called thephase space. Dynamical sys-
tems are used to describe the evolution of physical systems in which the state
of the system at some future time depends only on the initial state of the sys-
tem and on the elapsed time. As an example, Newtonian mechanics permits us

5



1. FUNDAMENTAL THEORY

to view the earth-moon-sun system as a dynamical system, butthe phase space
is not physical spaceR3, but is instead an 18-dimensional Euclidean space in
which the coordinates of each point reflect the position and momentum of each
of the three objects. (Why isn’t a 9-dimensional space, corresponding to the three
spatial coordinates of the three objects, sufficient?)

1.2 Existence of Solutions

Approximate Solutions

Consider the IVP (

Px D f .t; x/

x.t0/ D a;
(1.6)

wheref W dom.f / � R � R
n ! R

n is continuous, and.t0; a/ 2 dom.f / is
constant. The Fundamental Theorem of Calculus implies that(1.6) is equivalent
to the integral equation

x.t/ D aC
Z t

t0

f .s; x.s// ds: (1.7)

How does one go about proving that (1.7) has a solution if, unlike the case
with so many IVPs studied in introductory courses, a formulafor a solution can-
not be found? One idea is to construct a sequence of “approximate” solutions,
with the approximations becoming better and better, in somesense, as we move
along the sequence. If we can show that this sequence, or a subsequence, con-
verges to something, that limit might be an exact solution.

One way of constructing approximate solutions isPicard iteration. Here, we
plug an initial guess in forx on the right-hand side of (1.7), take the resulting
value of the left-hand side and plug that in forx again, etc. More precisely, we
can setx1.t/ WD a and recursively definexkC1 in terms ofxk for k > 1 by

xkC1.t/ WD aC
Z t

t0

f .s; xk.s// ds:

Note that if, for somek, xk D xkC1 then we have found a solution.
Another approach is to construct aTonelli sequence. For eachk 2 N, let

xk.t/ be defined by

xk.t/ D

8

<̂

:̂

a; if t0 � t � t0 C 1=k

aC
Z t�1=k

t0

f .s; xk.s// dx; if t � t0 C 1=k
(1.8)

6



Existence of Solutions

for t � t0, and definexk.t/ similarly for t � t0.
We will use the Tonelli sequence to show that (1.7) (and therefore (1.6)) has a

solution, and will use Picard iterates to show that, under anadditional hypothesis
onf , the solution of (1.7) is unique.

Existence

For the first result, we will need the following definitions and theorems.

Definition. A sequence of functionsgk W U � R ! R
n is uniformly boundedif

there existsM > 0 such thatjgk.t/j � M for everyt 2 U and everyk 2 N.

Definition. A sequence of functionsgk W U � R ! R
n is uniformly equicontin-

uousif for every" > 0 there exists a numberı > 0 such thatjgk.t1/�gk.t2/j < "
for everyk 2 N and everyt1; t2 2 U satisfyingjt1 � t2j < ı.

Definition. A sequence of functionsgk W U � R ! R
n converges uniformlyto a

functiong W U � R ! R
n if for every " > 0 there exists a numberN 2 N such

that if k � N andt 2 U thenjgk.t/ � g.t/j < ".

Definition. If a 2 R
n andˇ > 0, then theopen ball of radiuš centered ata,

denotedB.a; ˇ/, is the set

˚

x 2 R
n
ˇ
ˇ jx � aj < ˇ

	

:

Theorem. (Arzela-Ascoli)Every uniformly bounded, uniformly equicontinuous
sequence of functionsgk W U � R ! R

n has a subsequence that converges
uniformly on compact (closed and bounded) sets.

Theorem. (Uniform Convergence)If a sequence of continuous functionshk W
Œb; c� ! R

n converges uniformly toh W Œb; c� ! R
n, then

lim
k"1

Z c

b

hk.s/ ds D
Z c

b

h.s/ ds:

We are now in a position to state and prove the Cauchy-Peano Existence
Theorem.

Theorem. (Cauchy-Peano)Supposef W Œt0 � ˛; t0 C ˛� � B.a; ˇ/ ! R
n

is continuous and bounded byM > 0. Then(1.7) has a solution defined on
Œt0 � b; t0 C b�, whereb D minf˛; ˇ=M g.

7



1. FUNDAMENTAL THEORY

Proof. For simplicity, we will only considert 2 Œt0; t0 C b�. For eachk 2 N, let
xk W Œt0; t0 C b� ! R

n be defined by (1.8). We will show that.xk/ converges to
a solution of (1.6).

Step 1: Eachxk is well-defined.
Fix k 2 N. Note that the point.t0; a/ is in the interior of a set on whichf is
well-defined. Because of the formula forxk.t/ and the fact that it is, in essence,
recursively defined on intervals of width1=k moving steadily to the right, ifxk
failed to be defined onŒt0; t0C b� then there would bet1 2 Œt0C 1=k; t0 C b/ for
which jxk.t1/ � aj D ˇ. Pick the first sucht1. Using (1.8) and the bound onf ,
we see that

jxk.t1/ � aj D
ˇ
ˇ
ˇ
ˇ
ˇ

Z t1�1=k

t0

f .s; xk.s// ds

ˇ
ˇ
ˇ
ˇ
ˇ

�
Z t1�1=k

t0

jf .s; xk.s//jds

�
Z t1�1=k

t0

M ds D M.t1 � t0 � 1=k/ < M.b � 1=k/

� ˇ �M=k < ˇ D jxk.t1/ � aj;

which is a contradiction.
Step 2: .xk/ is uniformly bounded.

Calculating as above, we find that (1.8) implies that, fork � 1=b,

jxk.t/j � jaj C
Z bCt0�1=k

t0

jf .s; xk.s//jdx � jaj C .b � 1=k/M < jaj C ˇ:

Step 3: .xk/ is uniformly equicontinuous.
If t1; t2 � t0 C 1=k, then

jxk.t1/ � xk.t2/j D
ˇ
ˇ
ˇ
ˇ

Z t2

t1

f .s; xk.s// ds

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

Z t2

t1

jf .s; xk.s//jds
ˇ
ˇ
ˇ
ˇ

� M jt2 � t1j:

Sincexk is constant onŒt0; t0 C 1=k� and continuous att0 C 1=k, the estimate
jxk.t1/ � xk.t2/j � M jt2 � t1j holds for everyt1; t2 2 Œt0; t0 C b�. Thus, given
" > 0, we can setı D "=M and see that uniform equicontinuity holds.

Step 4: Some subsequence.xk`
/ of .xk/ converges uniformly, say tox, on

the intervalŒt0; t0 C b�.
This follows directly from the previous steps and the Arzela-Ascoli Theorem.

Step 5: The functionf .�; x.�// is the uniform limit of .f .�; xk`
.�/// on the

interval Œt0; t0 C b�.
Let " > 0 be given. Sincef is continuous on a compact set, it is uniformly
continuous. Thus, we can pickı > 0 such thatjf .s; p/� f .s; q/j < " whenever

8



Uniqueness of Solutions

jp � qj < ı. Since.xk`
/ converges uniformly tox, we can pickN 2 N such

that jxk`
.s/ � x.s/j < ı whenevers 2 Œt0; t0 C b� and` � N . If ` � N , then

jf .s; xk`
.s// � f .s; x.s//j < ".

Step 6: The functionx is a solution of (1.6).
Fix t 2 Œt0; t0 C b�. If t D t0, then clearly (1.7) holds. Ift > t0, then for`
sufficiently large

xk`
.t/ D aC

Z t

t0

f .s; xk`
.s// ds �

Z t

t�1=k`

f .s; xk`
.s// ds: (1.9)

Obviously, the left-hand side of (1.9) converges tox.t/ as` " 1. By the Uni-
form Convergence Theorem and the uniform convergence of.f .�; xk`

.�///, the
first integral on the right-hand side of (1.9) converges to

Z t

t0

f .s; x.s// ds;

and by the boundedness off the second integral converges to 0. Thus, taking
the limit of (1.9) as̀ " 1 we see thatx satisfies (1.7), and therefore (1.6), on
Œt0; t0 C b�.

Note that this theorem guarantees existence, but not necessarily uniqueness,
of a solution of (1.6).

Exercise 2How many solutions of the IVP
(

Px D 2
p

jxj
x.0/ D 0;

on the interval.�1;1/ are there? Give formulas for all of them.

1.3 Uniqueness of Solutions

Uniqueness

If more than continuity off is assumed, it may be possible to prove that

(

Px D f .t; x/

x.t0/ D a;
(1.10)

9



1. FUNDAMENTAL THEORY

has auniquesolution. In particular Lipschitz continuity off .t; �/ is sufficient.
(Recall thatg W dom.g/ � R

n ! R
n is Lipschitz continuousif there exists a

constantL > 0 such thatjg.x1/ � g.x2/j � Ljx1 � x2j for everyx1; x2 2
dom.g/; L is called aLipschitz constantfor g.)

One approach to uniqueness is developed in the following exercise, which
uses what are know asGronwall inequalities.

Exercise 3Assume that the conditions of the Cauchy-Peano Theorem
hold and that, in addition,f .t; �/ is Lipschitz continuous with Lipschitz
constantL for everyt . Show that the solution of (1.10) is unique onŒt0; t0C
b� by completing the following steps. (The solution can similarly be shown
to be unique onŒt0 � b; t0�, but we won’t bother doing that here.)

(a) If x1 andx2 are each solutions of (1.10) onŒt0; t0 C b� andU W Œt0; t0C
b� ! R is defined byU.t/ WD jx1.t/ � x2.t/j, show that

U.t/ � L

Z t

t0

U.s/ ds (1.11)

for everyt 2 Œt0; t0 C b�.

(b) Pick " > 0 and let

V.t/ WD "C L

Z t

t0

U.s/ ds:

Show that
V 0.t/ � LV.t/ (1.12)

for everyt 2 Œt0; t0 C b�, and thatV.t0/ D ".

(c) Dividing both sides of (1.12) byV.t/ and integrating fromt D t0 to
t D T , show thatV.T / � "expŒL.T � t0/�.

(d) By using (1.11) and letting" # 0, show thatU.T / D 0 for all T 2
Œt0; t0 C b�, sox1 D x2.

We will prove an existence-uniqueness theorem that combines the results of
the Cauchy-Peano Theorem and Exercise 3. The reason for thisapparently re-
dundant effort is that the concepts and techniques introduced in this proof will be
useful throughout these notes.

10



Uniqueness of Solutions

First, we review some definitions and results pertaining to metric spaces.

Definition. A metric spaceis a setX together with a functiond W X � X ! R

satisfying:

1. d.x; y/ � 0 for everyx; y 2 X , with equality if and only ifx D y;

2. d.x; y/ D d.y; x/ for everyx; y 2 X ;

3. d.x; y/C d.y; z/ � d.x; z/ for everyx; y; z 2 X .

Definition. A normed vector spaceis a vector space together with a function
k � k W X ! R satisfying:

1. kxk � 0 for everyx 2 X , with equality if and only ifx D 0;

2. k�xk D j�jkxk for everyx 2 X and every scalar�;

3. kx C yk � kxk C kyk for everyx; y 2 X .

Every normed vector space is a metric space with metricd.x; y/ D kx�yk.

Definition. An inner product spaceis a vector space together with a function
h�; �i W X � X ! R satisfying:

1. hx; xi � 0 for everyx 2 X , with equality if and only ifx D 0;

2. hx; yi D hy; xi for everyx; y 2 X ;

3. h�x C �y; zi D �hx; zi C �hy; zi for everyx; y; z 2 X and all scalars
�;�.

Every inner product space is a normed vector space with normkxk equal to
p

hx; xi.

Definition. A sequence.xn/ in a metric spaceX is said to be (a)Cauchy(se-
quence) if for every" > 0, there existsN 2 N such thatd.xm; xn/ < "whenever
m;n � N .

Definition. A sequence.xn/ in a metric spaceX convergesto x if for every
" > 0, there existsN 2 N such thatd.xn; x/ < " whenevern � N .

11



1. FUNDAMENTAL THEORY

Definition. A metric space is said to becompleteif every Cauchy sequence inX
converges (inX ). A complete normed vector space is called aBanach space. A
complete inner product space is called aHilbert space.

Definition. A function f W X ! Y from a metric space to a metric space is
said to beLipschitz continuousif there existsL 2 R such thatd.f .u/; f .v// �
Ld.u; v/ for everyu; v 2 X . We callL a Lipschitz constant, and write Lip.f /
for the smallest Lipschitz constant that works.

Definition. A contractionis a Lipschitz continuous function from a metric space
to itself that has Lipschitz constant less than 1.

Definition. A fixed pointof a functionT W X ! X is a pointx 2 X such that
T .x/ D x.

Theorem. (Contraction Mapping Principle) If X is a nonempty, complete met-
ric space andT W X ! X is a contraction, thenT has a unique fixed point in
X .

Proof. Pick � < 1 such thatd.T .x/; T .y// � �d.x; y/ for everyx; y 2 X .
Pick any pointx0 2 X . Define a sequence.xk/ by the recursive formula

xkC1 D T .xk/: (1.13)

If k � ` � N , then

d.xk ; x`/ � d.xk ; xk�1/C d.xk�1; xk�2/C � � � C d.x`C1; x`/

� �d.xk�1; xk�2/C �d.xk�2; xk�3/C � � � C �d.x`; x`�1/

:::

� �k�1d.x1; x0/C �k�2d.x1; x0/C � � � C �`d.x1; x0/

� �N

1 � �d.x1; x0/:

Hence,.xk/ is a Cauchy sequence. SinceX is complete,.xk/ converges to some
x 2 X . By letting k " 1 in (1.13) and using the continuity ofT , we see that
x D T .x/, sox is a fixed point ofT .

If there were another fixed pointy of T , then

d.x; y/ D d.T .x/; T .y// � �d.x; y/;

so d.x; y/ D 0, which meansx D y. This shows uniqueness of the fixed
point.

12



Picard-Lindelöf Theorem

1.4 Picard-Lindelöf Theorem

Theorem.The spaceC.Œa; b�/ of continuous functions fromŒa; b� to R
n equipped

with the norm
kf k1 WD sup

˚

jf .x/j
ˇ
ˇ x 2 Œa; b�

	

is a Banach space.

Definition. Two different normsk�k1 andk�k2 on a vector spaceX areequivalent
if there exist constantsm;M > 0 such that

mkxk1 � kxk2 � Mkxk1

for everyx 2 X .

Theorem. If .X ; k � k1/ is a Banach space andk � k2 is equivalent tok � k1 onX ,
then.X ; k � k2/ is a Banach space.

Theorem.A closed subspace of a complete metric space is a complete metric
space.

We are now in a position to state and prove the Picard-Lindel¨of Existence-
Uniqueness Theorem. Recall that we are dealing with the IVP

(

Px D f .t; x/

x.t0/ D a:
(1.14)

Theorem. (Picard-Lindelöf) Supposef W Œt0 � ˛; t0 C ˛� � B.a; ˇ/ ! R
n is

continuous and bounded byM . Suppose, furthermore, thatf .t; �/ is Lipschitz
continuous with Lipschitz constantL for everyt 2 Œt0 � ˛; t0 C ˛�. Then(1.14)
has a unique solution defined onŒt0 � b; t0 C b�, whereb D minf˛; ˇ=M g.

Proof. LetX be the set of continuous functions fromŒt0 � b; t0 C b� toB.a; ˇ/.
The norm

kgkw WD sup
˚

e�2Ljt�t0jjg.t/j
ˇ
ˇ t 2 Œt0 � b; t0 C b�

	

is equivalent to the standard supremum normk � k1 onC.Œt0� b; t0C b�/, so this
vector space is complete under this weighted norm. The setX endowed with this
norm/metric is a closed subset of this complete Banach space, soX equipped
with the metricd.x1; x2/ WD kx1 � x2kw is a complete metric space.

13



1. FUNDAMENTAL THEORY

Givenx 2 X , defineT .x/ to be the function onŒt0 � b; t0 C b� given by the
formula

T .x/.t/ D aC
Z t

t0

f .s; x.s// ds:

Step 1: If x 2 X thenT .x/makes sense.
This should be obvious.

Step 2: If x 2 X thenT .x/ 2 X .
If x 2 X , then it is clear thatT .x/ is continuous (and, in fact, differentiable).
Furthermore, fort 2 Œt0 � b; t0 C b�

jT .x/.t/ � aj D
ˇ
ˇ
ˇ
ˇ

Z t

t0

f .s; x.s// ds

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

Z t

t0

jf .s; x.s//jds
ˇ
ˇ
ˇ
ˇ

� Mb � ˇ;

soT .x/.t/ 2 B.a; ˇ/. Hence,T .x/ 2 X .
Step 3: T is a contraction onX .

Let x; y 2 X , and note thatkT .x/ � T .y/kw is

sup

(

e�2Ljt�t0j

ˇ
ˇ
ˇ
ˇ

Z t

t0

Œf .s; x.s// � f .s; y.s//� ds
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
t 2 Œt0 � b; t0 C b�

)

:

For a fixedt 2 Œt0 � b; t0 C b�,

e�2Ljt�t0j

ˇ
ˇ
ˇ
ˇ

Z t

t0

Œf .s; x.s// � f .s; y.s//� ds
ˇ
ˇ
ˇ
ˇ

� e�2Ljt�t0j

ˇ
ˇ
ˇ
ˇ

Z t

t0

jf .s; x.s// � f .s; y.s//jds
ˇ
ˇ
ˇ
ˇ

� e�2Ljt�t0j

ˇ
ˇ
ˇ
ˇ

Z t

t0

Ljx.s/ � y.s/jds
ˇ
ˇ
ˇ
ˇ

� Le�2Ljt�t0j

ˇ
ˇ
ˇ
ˇ

Z t

t0

kx � ykwe2Ljs�t0j ds

ˇ
ˇ
ˇ
ˇ

D kx � ykw
2

�

1 � e�2Ljt�t0j
�

� 1

2
kx � ykw :

Taking the supremum over allt 2 Œt0 � b; t0 C b�, we find thatT is a contraction
(with � D 1=2).

By the contraction mapping principle, we therefore know that T has a unique
fixed point inX . This means that (1.14) has a unique solution inX (which is the
only place a solution could be).

14
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1.5 Intervals of Existence

Maximal Interval of Existence

We begin our discussion with some definitions and an important theorem of real
analysis.

Definition. Givenf W D � R�R
n ! R

n, we say thatf .t; x/ is locally Lipschitz
continuous with respect tox onD if for each.t0; a/ 2 D there is a numberL and
a product setI � U � D containing.t0; a/ in its interior such that the restriction
of f .t; �/ to U is Lipschitz continuous with Lipschitz constantL for everyt 2 I.

Definition. A subsetK of a topological space iscompactif wheneverK is con-
tained in the union of a collection of open sets, there is a finite subcollection of
that collection whose union also containsK. The original collection is called a
coverof K, and the finite subcollection is called afinite subcoverof the original
cover.

Theorem. (Heine-Borel)A subset ofRn is compact if and only if it is closed and
bounded.

Now, suppose thatD is an open subset ofR � R
n, .t0; a/ 2 D, andf W D !

R
n is locally Lipschitz continuous with respect tox on D. Then the Picard-

Lindelöf Theorem indicates that the IVP
(

Px D f .t; x/

x.t0/ D a
(1.15)

has a solution existing on some time interval containingt0 in its interior and that
the solution is unique on that interval. Let’s say that aninterval of existenceis an
interval containingt0 on which a solution of (1.15) exists. The following theorem
indicates how large an interval of existence may be.

Theorem. (Maximal Interval of Existence)The IVP(1.15)has a maximal in-
terval of existence, and it is of the form.!�; !C/, with !� 2 Œ�1;1/ and
!C 2 .�1;1�. There is a unique solutionx.t/ of (1.15) on .!�; !C/, and
.t; x.t// leaves every compact subsetK of D as t # !� and ast " !C.

Proof.
Step 1: If I1 andI2 are open intervals of existence with corresponding solu-

tionsx1 andx2, thenx1 andx2 agree onI1 \ I2.
Let I D I1\I2, and letI� be the largest interval containingt0 and contained in

15



1. FUNDAMENTAL THEORY

I on whichx1 andx2 agree. By the Picard-Lindelöf Theorem,I� is nonempty. If
I� ¤ I, thenI� has an endpointt1 in I. By continuity,x1.t1/ D x2.t1/ DW a1.
The Picard-Lindelöf Theorem implies that the new IVP

(

Px D f .t; x/

x.t1/ D a1
(1.16)

has a local solution that is unique. But restrictions ofx1 andx2 near t1 each
provide a solution to (1.16), sox1 andx2 must agree in a neighborhood oft1.
This contradicts the definition oft1 and tells us thatI� D I.

Now, let .!�; !C/ be the union of all open intervals of existence.
Step 2: .!�; !C/ is an interval of existence.

Given t 2 .!�; !C/, pick an open interval of existenceQI that containst , and
let x.t/ D Qx.t/, where Qx is a solution to (1.15) onQI. Because of step 1, this
determines a well-defined functionx W .!�; !C/ ! R

n; clearly, it solves (1.15).
Step 3: .!�; !C/ is the maximal interval of existence.

An extension argument similar to the one in Step 1 shows that every interval of
existence is contained in an open interval of existence. Every open interval of
existence is, in turn, a subset of.!�; !C/.

Step 4: x is the only solution of (1.15) on.!�; !C/.
This is a special case of Step 1.

Step 5: .t; x.t// leaves every compact subsetK � D as t # !� and as
t " !C.
We only treat what happens ast " !C; the other case is similar. Furthermore,
the case when!C D 1 is immediate, so suppose!C is finite.

Let a compact subsetK of D be given. SinceD is open, for each point
.t; a/ 2 K we can pick numbers̨.t; a/ > 0 andˇ.t; a/ > 0 such that

Œt � 2˛.t; a/; t C 2˛.t; a/� � B.a; 2ˇ.t; a// � D:

Note that the collection of sets

˚

.t � ˛.t; a/; t C ˛.t; a// � B.a; ˇ.t; a//
ˇ
ˇ .t; a/ 2 K

	

is a cover ofK. SinceK is compact, a finite subcollection, say

˚

.ti � ˛.ti ; ai /; ti C ˛.ti ; ai // � B.ai ; ˇ.ti ; ai //
	m

iD1
;

coversK. Let

K0 WD
m
[

iD1

�

Œti � 2˛.ti ; ai /; ti C 2˛.ti ; ai /� � B.ai ; 2ˇ.ti ; ai //
�

;

16



Intervals of Existence

let
Q̨ WD min

˚

˛.ti ; ai /
	m

iD1
;

and let
Q̌ WD min

˚

ˇ.ti ; xi /
	m

iD1
:

SinceK0 is a compact subset ofD, there is a constantM > 0 such thatf is
bounded byM onK0. By the triangle inequality,

Œt0 � Q̨ ; t0 C Q̨ � � B.a; Q̌/ � K0;

for every.t0; a/ 2 K, sof is bounded byM on each such product set. According
to the Picard-Lindelöf Theorem, this means that for every.t0; a/ 2 K a solution
to Px D f .t; x/ starting at.t0; a/ exists for at least minf Q̨ ; Q̌=M g units of time.
Hence,x.t/ … K for t > !C � minf Q̨ ; Q̌=M g.

Corollary. If D0 is a bounded set andD D .c; d/ � D0 (with c 2 Œ�1;1/ and
d 2 .�1;1�), then either!C D d or x.t/ ! @D0 as t " !C, and either
!� D c or x.t/ ! @D0 as t # !�.

Corollary. If D D .c; d/ � R
n (with c 2 Œ�1;1/ and d 2 .�1;1�), then

either!C D d or jx.t/j " 1 as t " !C, and either!� D c or jx.t/j " 1 as
t # !�.

If we’re dealing with an autonomous equation on a bounded set, then the first
corollary applies to tell us that the only way a solution could fail to exist for all
time is for it to approach the boundary of the spatial domain.(Note that this is
not the same as saying thatx.t/ converges to a particular point on the boundary;
can you give a relevant example?) The second corollary says that autonomous
equations on all ofRn have solutions that exist until they become unbounded.

Global Existence

For the solution set of the autonomous ODEPx D f .x/ to be representable by
a dynamical system, it is necessary for solutions to exist for all time. As the
discussion above illustrates, this is not always the case. When solutions do die
out in finite time by hitting the boundary of the phase space� or by going off to
infinity, it may be possible to change the vector fieldf to a vector field Qf that
points in the same direction as the original but has solutions that exist for all time.

For example, if� D R
n, then we could consider the modified equation

Px D f .x/
p

1C jf .x/j2
:

17
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Clearly,j Pxj < 1, so it is impossible forjxj to approach infinity in finite time.
If, on the other hand,� ¤ R

n, then consider the modified equation

Px D f .x/
p

1C jf .x/j2
� d.x;Rn n�/
p

1C d.x;Rn n�/2
;

whered.x;Rn n �/ is the distance fromx to the complement of�. It is not
hard to show that it is impossible for a solutionx of this equation to become
unbounded or to approach the complement of� in finite time, so, again, we have
global existence.

It may or may not seem obvious that if two vector fields point inthe same
direction at each point, then the solution curves of the corresponding ODEs in
phase space match up. In the following exercise, you are asked to prove that this
is true.

Exercise 4Suppose that� is a subset ofRn, thatf W � ! R
n and

g W � ! R
n are (continuous) vector fields, and that there is a continuous

functionh W � ! .0;1/ such thatg.u/ D h.u/f .u/ for everyu 2 �. If x
is the only solution of

(

Px D f .x/

x.0/ D a

(defined on the maximal interval of existence) andy is the only solution of
(

Py D g.y/

y.0/ D a;

(defined on the maximal interval of existence), show that there is an in-
creasing functionj W dom.y/ ! dom.x/ such thaty.t/ D x.j.t// for
everyt 2 dom.y/.

1.6 Dependence on Parameters

Parameters vs. Initial Conditions

Consider the IVP
(

Px D f .t; x/

x.t0/ D a;
(1.17)

18
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and the paramterized IVP

(

Px D f .t; x; �/

x.t0/ D a;
(1.18)

where� 2 R
k. We are interested in studying how the solution of (1.17) depends

on the initial conditiona and how the solution of (1.18) depends on the parameter
�. In a sense, these two questions are equivalent. For example, if x solves (1.17)
and we letQx WD x � a and Qf .t; Qx; a/ WD f .t; Qx C a/, then Qx solves

(

PQx D Qf .t; Qx; a/
Qx.t0/ D 0;

soa appears as a parameter rather than an initial condition. If,on the other hand,
x solves (1.18), and we letQx WD .x; �/ and Qf .t; Qx/ WD .f .t; x; �/; 0/, then Qx
solves (

PQx D Qf .t; Qx/
Qx.t0/ D .a; �/;

so� appears as part of the initial condition, rather than as a parameter in the
ODE.

We will concentrate on (1.18).

Continuous Dependence

The following result can be proved by an approach like that outlined in Exercise
3.

Theorem. (Grownwall Inequality) Suppose thatX.t/ is a nonnegative, contin-
uous, real-valued function onŒt0; T � and that there are constantsC;K > 0 such
that

X.t/ � C CK

Z t

t0

X.s/ ds

for everyt 2 Œt0; T �. Then

X.t/ � CeK.t�t0/

for everyt 2 Œt0; T �.

Using the Grownwall inequality, we can prove that the solution of (1.18)
depends continuously on�.
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Theorem. (Continuous Dependence)Suppose

f W Œt0 � ˛; t0 C ˛� ��1 ��2 � R � R
n � R

k ! R
n

is continuous. Suppose, furthermore, thatf .t; �; �/ is Lipschitz continuous with
Lipschitz constantL1 > 0 for every.t; �/ 2 Œt0 � ˛; t0 C ˛� ��2 andf .t; x; �/
is Lipschitz continuous with Lipschitz constantL2 > 0 for every.t; x/ 2 Œt0 �
˛; t0 C ˛� ��1. If xi W Œt0 � ˛; t0 C ˛� ! R

n (i D 1; 2) satisfy
(

Pxi D f .t; xi ; �i /

xi .t0/ D a;

then

jx1.t/ � x2.t/j � L2

L1
j�1 � �2j.eL1jt�t0j � 1/ (1.19)

for t 2 Œt0 � ˛; t0 C ˛�.

This theorem shows continuous dependence on parameters if,in addition to
the hypotheses of the Picard-Lindelöf Theorem, the right-hand side of the ODE
in (1.18) is assumed to be Lipschitz continuous with respectto the parameter (on
finite time intervals). The connection between (1.17) and (1.18) shows that the
hypotheses of the Picard-Lindelöf Theorem are sufficient to guarantee continu-
ous dependence on initial conditions. Note the exponentialdependence of the
modulus of continuity onjt � t0j.

Proof. For simplicity, we only considert � t0. Note that

jx1.t/ � x2.t/j D
ˇ
ˇ
ˇ
ˇ

Z t

t0

Œf .s; x1.s/; �1/ � f .s; x2.s/; �2� ds
ˇ
ˇ
ˇ
ˇ

�
Z t

t0

jf .s; x1.s/; �1/ � f .s; x2.s/; �2/jds

�
Z t

t0

jf .s; x1.s/; �1/ � f .s; x1.s/; �2/jds

C
Z t

t0

jf .s; x1.s/; �2/ � f .s; x2.s/; �2/jds

�
Z t

t0

ŒL2j�1 � �2j C L1jx1.s/ � x2.s/j� ds

LetX.t/ D L2j�1 � �2j C L1jx1.t/ � x2.t/j. Then

X.t/ � L2j�1 � �2j C L1

Z t

t0

X.s/ ds;
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so by the Gronwall InequalityX.t/ � L2j�1 � �2jeL1.t�t0/. This means that
(1.19) holds.

Exercise 5Suppose thatf W R � R ! R andg W R � R ! R are
continuous and are each Lipschitz continuous with respect to their second
variable. Suppose, also, thatx is a global solution to

(

Px D f .t; x/

x.t0/ D a;

andy is a global solution to
(

Py D g.t; y/

y.t0/ D b:

(a) If f .t; p/ < g.t; p/ for every .t; p/ 2 R � R anda < b, show that
x.t/ < y.t/ for everyt � t0.

(b) If f .t; p/ � g.t; p/ for every.t; p/ 2 R � R anda � b, show that
x.t/ � y.t/ for everyt � t0. (Hint: You may want to use the results
of part (a) along with a limiting argument.)

Differentiable Dependence

Theorem. (Differentiable Dependence)Supposef W R � R � R ! R is a
continuous function and is continuously differentiable with respect tox and�.
Then the solutionx.�; �/ of

(

Px D f .t; x; �/

x.t0/ D a
(1.20)

is differentiable with respect to�, andy D x� WD @x=@� satisfies

(

Py D fx.t; x.t; �/; �/y C f�.t; x.t; �/; �/

y.t0/ D 0:
(1.21)

Thatx�, if it exists, should satisfy the IVP (1.21) is not terribly surprising;
(1.21) can be derived (formally) by differentiating (1.20)with respect to�. The
real difficulty is showing thatx� exists. The key to the proof is to use the fact
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that (1.21) has a solutiony and then to use the Gronwall inequality to show that
difference quotients forx� converge toy.

Proof. Given�, it is not hard to see that the right-hand side of the ODE in (1.21)
is continuous int andy and is locally Lipschitz continuous with respect toy,
so by the Picard-Lindelöf Theorem we know that (1.21) has a unique solution
y.�; �/. Let

w.t; �;��/ WD x.t; �C��/ � x.t; �/
��

:

We want to show thatw.t; �;��/ ! y.t; �/ as�� ! 0.
Let z.t; �;��/ WD w.t; �;��/ � y.t; �/. Then

dz

dt
.t; �;��/ D dw

dt
.t; �;��/ � fx.t; x.t; �/; �/y.t; �/ � f�.t; x.t; �/; �/;

and

dw

dt
.t; �;��/ D f .t; x.t; �C��/;�C��/ � f .t; x.t; �/; �/

��

D f .t; x.t; �C��/;�C��/ � f .t; x.t; �/; �C��/

��

C f .t; x.t; �/; �C��/ � f .t; x.t; �/; �/
��

D fx.t; x.t; �/ C �1�x;�C��/w.t; �;��/C f�.t; x.t; �/; � C �2��/;

for some�1; �2 2 Œ0; 1� (by the Mean Value Theorem), where

�x WD x.t; �C��/� x.t; �/:

Hence,

ˇ
ˇ
ˇ
ˇ

dz

dt
.t; �;��/

ˇ
ˇ
ˇ
ˇ

� jf�.t; x.t; �/; � C �2��/ � f�.t; x.t; �/; �/j

C jfx.t; x.t; �/C �1�x;�C��/j � jz.t; �;��/j
C jfx.t; x.t; �/ C �1�x;�C��/ � fx.t; x.t; �/; � C��/j � jy.t; �/j

C jfx.t; x.t; �/; � C��/ � fx.t; x.t; �/; �/j � jy.t; �/j
� p.t; �;��/C .jfx.t; x.t; �/; �/j C p.t; �;��//jz.t; �;��/j;

wherep.t; �;��/ ! 0 as�� ! 0, uniformly on bounded sets.
LettingX.t/ D "C .K C "/jzj, we see that if

jfx.t; x.t; �/; �/j � K (1.22)
22
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and
jp.t; �;��/j < "; (1.23)

then

jz.t; �;��/j �
Z t

t0

ˇ
ˇ
ˇ
ˇ

dz

ds
.s; �;��/

ˇ
ˇ
ˇ
ˇ
ds �

Z t

t0

X.s/ ds

so

X.t/ � "C .K C "/

Z t

t0

X.s/ ds;

which givesX.t/ � "e.KC"/.t�t0/, by Gronwall’s inequality. This, in turn, gives

jzj � ".e.KC"/.t�t0/ � 1/
K C "

:

Given t � t0, pickK so large that (1.22) holds. As�� ! 0, we can take"
arbitrarily small and still have (1.23) hold, to see that

lim
��!0

z.t; �;��/ D 0:
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Linear Systems

2.1 Constant Coefficient Linear Equations

Linear Equations

Definition. Given
f W R � R

n ! R
n;

we say that the first-order ODE

Px D f .t; x/ (2.1)

is linear if every linear combination of solutions of (2.1) is a solution of (2.1).

Definition. Given two vector spacesX andY, L.X ;Y/ is the space of linear
maps fromX toY.

Exercise 6Show that if (2.1) is linear (andf is continuous) then there
is a functionA W R ! L.Rn;Rn/ such thatf .t; p/ D A.t/p, for every
.t; p/ 2 R � R

n.

ODEs of the formPx D A.t/x C g.t/ are also often called linear, although
they don’t satisfy the definition given above. These are called inhomogeneous;
ODEs satisfying the previous definition are calledhomogeneous.

Constant Coefficients and the Matrix Exponential

Here we will study the autonomous IVP
(

Px D Ax

x.0/ D x0;
(2.2)
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2. LINEAR SYSTEMS

whereA 2 L.Rn;Rn/, or equivalentlyA is a (constant)n � n matrix.
If n D 1, then we’re dealing withPx D ax. The solution isx.t/ D etax0.

Whenn > 1, we will show that we can similarly defineetA in a natural way, and
the solution of (2.2) will be given byx.t/ D etAx0.

GivenB 2 L.Rn;Rn/, we define its matrix exponential

eB WD
1
X

kD0

Bk

kŠ
:

We will show that this series converges, but first we specify anorm onL.Rn;Rn/.

Definition. The operator normkBk of an elementB 2 L.Rn;Rn/ is defined by

kBk D sup
x¤0

jBxj
jxj D sup

jxjD1

jBxj:

L.Rn;Rn/ is a Banach space under the operator norm. Thus, to show that
the series foreB converges, it suffices to show that







m
X

kD`

Bk

kŠ







can be made arbitrarily small by takingm � ` � N for N sufficiently large.
SupposeB1; B2 2 L.Rn;Rn/ andB2 does not map everything to zero. Then

kB1B2k D sup
x¤0

jB1B2xj
jxj D sup

B2x¤0;x¤0

jB1B2xj
jB2xj � jB2xj

jxj

�
 

sup
y¤0

jB1yj
jyj

! 

sup
x¤0

jB2xj
jxj

!

D kB1k � kB2k:

If B2 does map everything to zero, thenkB2k D kB1B2k D 0, sokB1B2k �
kB1k � kB2k, obviously. Thus, the operator norm issubmultiplicative. Using this
property, we have







m
X

kD`

Bk

kŠ







�
m
X

kD`







Bk

kŠ







�
m
X

kD`

kBkk
kŠ

:

Since the regular exponential series (for real arguments) has an infinite radius
of convergence, we know that the last quantity in this estimate goes to zero as
`;m " 1.

Thus, eB makes sense, and, in particular,etA makes sense for each fixed
t 2 R and eachA 2 L.Rn;Rn/. But doesx.t/ WD etAx0 solve (2.2)? To check
that, we’ll need the following important property.
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Understanding the Matrix Exponential

Lemma. If B1; B2 2 L.Rn;Rn/ andB1B2 D B2B1, theneB1CB2 D eB1eB2 .

Proof. Using commutativity, we have

eB1eB2 D

0

@

1
X

jD0

B
j
1

j Š

1

A

 
1
X

kD0

Bk2
kŠ

!

D
1
X

jD0

1
X

kD0

B
j
1B

k
2

j ŠkŠ
D

1
X

iD0

X

jCkDi

B
j
1B

k
2

j ŠkŠ

D
1
X

iD0

i
X

jD0

B
j
1B

.i�j /
2

j Š.i � j /Š D
1
X

iD0

i
X

jD0

�

i

j

�
B
j
1B

.i�j /
2

i Š

D
1
X

iD0

.B1 C B2/
i

i Š
D eB1CB2 :

Now, if x W R ! R
n is defined byx.t/ WD etAx0, then

d

dt
x.t/ D lim

h!0

x.t C h/ � x.t/
h

D lim
h!0

e.tCh/Ax0 � etAx0
h

D
 

lim
h!0

e.tCh/A � etA
h

!

x0 D
 

lim
h!0

ehA � I
h

!

etAx0

D
 

lim
h!0

1
X

kD1

hk�1Ak

kŠ

!

etAx0 D AetAx0 D Ax.t/;

sox.t/ D etAx0 really does solve (2.2).

2.2 Understanding the Matrix Exponential

Transformations

Now that we have a representation of the solution of linear constant-coefficient
initial-value problems, we should ask ourselves: “What good is it?” Does the
power series formula for the matrix exponential provide an efficient means for
calculating exact solutions? Not usually. Is it an efficientway to compute ac-
curate numerical approximations to the matrix exponential? Not according to
Matrix Computationsby Golub and Van Loan. Does it provide insight into how
solutions behave? It is not clear that it does. There are, however, transformations
that may help us handle these problems.
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2. LINEAR SYSTEMS

Suppose thatB;P 2 L.Rn;Rn/ are related by a similarity transformation;
i.e., B D QPQ�1 for some invertibleQ. Calculating, we find that

eB D
1
X

kD0

Bk

kŠ
D

1
X

kD0

.QPQ�1/k

kŠ
D

1
X

kD0

QP kQ�1

kŠ

D Q

 
1
X

kD0

P k

kŠ

!

Q�1 D QePQ�1:

It would be nice if, givenB, we could chooseQ so thatP were a diagonal
matrix, since (as can easily be checked)

ediagfp1;p2;:::;png D diagfep1 ; ep2 ; : : : ; epng:

Unfortunately, this cannot always be done. Over the next fewsections, we will
show that what can be done, in general, is to pickQ so thatP D S CN , where
S is asemisimplematrix with a fairly simple form,N is anilpotentmatrix with
a fairly simple form, andS andN commute. (Recall that a matrix is semisimple
if it is diagonalizable over the complex numbers and that a matrix is nilpotent if
some power of the matrix is0.) The forms ofS andN are simple enough that
we can calculate their exponentials fairly easily, and thenwe can multiply them
to get the exponential ofS CN .

We will spend a significant amount of time carrying out the project described
in the previous paragraph, even though it is linear algebra that some of you have
probably seen before. Since understanding the behavior of constant coefficient
systems plays a vital role in helping us understand more complicated systems,
I feel that the time investment is worth it. The particular approach we will take
follows chapters 3, 4, 5, and 6, and appendix 3 of Hirsch and Smale fairly closely.

Eigensystems

GivenB 2 L.Rn;Rn/, recall that that� 2 C is aneigenvalueof B if Bx D �x

for some nonzerox 2 R
n or if QBx D �x for some nonzerox 2 C

n, where QB is
thecomplexificationof B; i.e., the element ofL.Cn;Cn/ which agrees withB on
R
n. (Just as we often identify a linear operator with a matrix representation of it,

we will usually not make a distinction between an operator ona real vector space
and its complexification.) A nonzero vectorx for which Bx D �x for some
scalar� is aneigenvector. An eigenvalue� with corresponding eigenvectorx
form aneigenpair.�; x/.

If an operatorA 2 L.Rn;Rn/ were chosen at random, it would almost surely
haven distinct eigenvaluesf�1; : : : ; �ng andn corresponding linearly indepen-
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Understanding the Matrix Exponential

dent eigenvectorsfx1; : : : ; xng. If this is the case, thenA is similar to the (possi-
bly complex) diagonal matrix

2

6
6
6
6
4

�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �n

3

7
7
7
7
5

:

More specifically,

A D

2

4x1 � � � xn

3

5 �

2

6
6
6
6
4

�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �n

3

7
7
7
7
5

�

2

4x1 � � � xn

3

5

�1

:

If the eigenvalues ofA are real and distinct, then this means that

tA D

2

4x1 � � � xn

3

5 �

2

6
6
6
6
4

t�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 t�n

3

7
7
7
7
5

�

2

4x1 � � � xn

3

5

�1

;

and the formula for the matrix exponential then yields

etA D

2

4x1 � � � xn

3

5 �

2

6
6
6
6
4

et�1 0 � � � 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 � � � 0 et�n

3

7
7
7
7
5

�

2

4x1 � � � xn

3

5

�1

:

This formula should make clear how the projections ofetAx0 grow or decay as
t ! ˙1.

The same sort of analysis works when the eigenvalues are (nontrivially) com-
plex, but the resulting formula is not as enlightening. In addition to the difficulty
of a complex change of basis, the behavior ofet�k is less clear when�k is not
real.

One way around this is the following. Sort the eigenvalues (and eigenvectors)
of A so that complex conjugate eigenvaluesf�1; �1; : : : ; �m; �mg come first and
are grouped together and so that real eigenvaluesf�mC1; : : : ; �rg come last. For
k � m, setak D Re�k 2 R, bk D Im �k 2 R, yk D Rexk 2 R

n, and
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2. LINEAR SYSTEMS

zk D Im xk 2 R
n. Then

Ayk D ARexk D ReAxk D Re�kxk D .Re�k/.Rexk/ � .Im�k/.Im xk/

D akyk � bkzk;

and

Azk D A Im xk D ImAxk D Im�kxk D .Im�k/.Rexk/C .Re�k/.Im xk/

D bkyk C akzk :

Using these facts, we haveA D QPQ�1, where

Q D

2

4z1 y1 � � � � � � zm ym xmC1 � � � xr

3

5

andP is the.mCr/� .mCr/ block diagonal matrix, whose firstm diagonal
blocks are the2 � 2 matrices

Ak D
�

ak �bk
bk ak

�

for k D 1; : : : ;m, and whose lastr � m diagonal blocks are the1 � 1 matrices
Œ�k� for k D mC 1; : : : ; r .

In order to computeetA from this formula, we’ll need to know how to com-
pute etAk . This can be done using the power series formula. An alternative
approach is to realize that

�

x.t/

y.t/

�

WD etAk

�

c

d

�

is supposed to solve the IVP
8

ˆ̂
ˆ
<̂

ˆ
ˆ̂
ˆ
:

Px D akx � bky
Py D bkx C aky

x.0/ D c

y.0/ D d:

(2.3)

Since we can check that the solution of (2.3) is
�

x.t/

y.t/

�

D
�

eak t .c cosbkt � d sinbkt/
eakt .d cosbkt C c sinbkt/

�

;

we can conclude that

etAk D
�

eak t cosbkt �eakt sinbkt
eakt sinbkt eak t cosbkt

�
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Generalized Eigenspace Decomposition

Putting this all together and using the form ofP , we haveetA D QetPQ�1,
whereetP is the.mC r/� .mC r/ block diagonal matrix whose firstm diagonal
blocks are the2 � 2 matrices

�

eakt cosbkt �eak t sinbkt
eak t sinbkt eakt cosbkt

�

for k D 1; : : : ;m, and the lastr �m diagonal blocks are the1�1matricesŒe�kt �

for k D mC 1; : : : ; r .
This representation ofetA shows that not only may the projections ofetAx0

grow or decay exponentially, they may also exhibit sinusoidally oscillatory be-
havior.

2.3 Generalized Eigenspace Decomposition

Eigenvalues don’t have to be distinct for the analysis of thematrix exponential
that was done last time to work. There just needs to be a basis of eigenvectors for
R
n (or C

n). Unfortunately, we don’t always have such a basis. For thisreason,
we need to generalize the notion of an eigenvector.

First, some definitions:

Definition. Thealgebraic multiplicityof an eigenvalue� of an operatorA is the
multiplicity of � as a zero of the characteristic polynomial det.A � xI /.

Definition. Thegeometric multiplicityof an eigenvalue� of an operatorA is the
dimension of the corresponding eigenspace,i.e., the dimension of the space of
all the eigenvectors ofA corresponding to�.

It is not hard to show (e.g., through a change-of-basis argument) that the ge-
ometric multiplicity of an eigenvalue is always less than orequal to its algebraic
multiplicity.

Definition. A generalized eigenvectorof A is a vectorx such that.A��I /kx D
0 for some scalar� and somek 2 N.

Definition. If � is an eigenvalue ofA, then thegeneralized eigenspace ofA be-
longing to� is the space of all generalized eigenvectors ofA corresponding to
�.

Definition. We say a vector spaceV is thedirect sumof subspacesV1; : : : ;Vm
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2. LINEAR SYSTEMS

of V and write
V D V1 ˚ � � � ˚ Vm

if for each v 2 V there is a unique.v1; : : : ; vm/ 2 V1 � � � � � Vm such that
v D v1 C � � � C vm.

Theorem. (Primary Decomposition Theorem)Let B be an operator onE ,
whereE is a complex vector space, or elseE is real andB has real eigenvalues.
ThenE is the direct sum of the generalized eigenspaces ofB. The dimension of
each generalized eigenspace is the algebraic multiplicityof the corresponding
eigenvalue.

Before proving this theorem, we introduce some notation andstate and prove
two lemmas.

GivenT W V ! V, let

N.T / D
˚

x 2 V
ˇ
ˇ T kx D 0 for somek > 0

	

;

and let

R.T / D
˚

x 2 V
ˇ
ˇ T ku D x has a solutionu for everyk > 0

	

:

Note thatN.T / is the union of the null spaces of the positive powers ofT and
R.T / is the intersection of the ranges of the positive powers ofT . This union
and intersection are each nested, and that implies that there is a numberm 2 N

such thatR.T / is the range ofTm andN.T / is the nullspace ofTm.

Lemma. If T W V ! V, thenV D N.T /˚R.T /.

Proof. Pick m such thatR.T / is the range ofTm andN.T / is the nullspace
of Tm. Note thatT jR.T / W R.T / ! R.T / is invertible. Givenx 2 V, let

y D
�

T jR.T /
��m

Tmx andz D x � y. Clearly,x D y C z, y 2 R.T /, and
Tmz D Tmx�Tmy D 0, soz 2 N.T /. If x D QyC Qz for some otherQy 2 R.T /
and Qz 2 N.T / thenTm Qy D Tmx � Tm Qz D Tmx, so Qy D y and Qz D z.

Lemma. If �j ; �k are distinct eigenvalues ofT W V ! V, then

N.T � �j I / � R.T � �kI /:

Proof. Note first that.T � �kI /N.T � �j I / � N.T � �j I /. We claim that, in
fact, .T � �kI /N.T � �jI / D N.T � �j I /; i.e., that

.T � �kI /jN.T��j I/
W N.T � �j I / ! N.T � �j I /
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is invertible. Suppose it isn’t; then we can pick a nonzerox 2 N.T � �j I / such
that.T ��kI /x D 0. But if x 2 N.T ��j I / then.T ��j I /mj x D 0 for some
mj � 0. Calculating,

.T � �j I /x D T x � �jx D �kx � �jx D .�k � �j /x;
.T � �jI /2x D T .�k � �j /x � �j .�k � �j /x D .�k � �j /2x;

:::

.T � �j I /mj x D � � � D .�k � �j /mj x ¤ 0;

contrary to assumption. Hence, the claim holds.
Note that this implies not only that

.T � �kI /N.T � �j I / D N.T � �j I /

but also that
.T � �kI /mN.T � �j I / D N.T � �j I /

for everym 2 N. This means that

N.T � �jI / � R.T � �kI /:

Proof of the Principal Decomposition Theorem.The claim is obviously true if
the dimension ofE is 0 or 1. We prove it for dimE > 1 by induction on dimE .
Suppose it holds on all spaces of smaller dimension thanE . Let �1; �2; : : : ; �q
be the eigenvalues ofB with algebraic multiplicitiesn1; n2; : : : ; nq . By the first
lemma,

E D N.B � �qI /˚R.B � �qI /:

Note that dimR.B � �qI / < dimE , andR.B � �qI / is (positively) invariant
underB. Applying our assumption toBjR.B��qI/

W R.B � �qI / ! R.B �
�qI /, we get a decomposition ofR.B � �qI / into the generalized eigenspaces
of BjR.B��qI/

. By the second lemma, these are just

N.B � �1I /;N.B � �2I /; : : : ; N.B � �q�1I /;

so

E D N.B � �1I /˚N.B � �2I /˚ � � � ˚N.B � �q�1I /˚ N.B � �qI /:
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Now, by the second lemma, we know thatBjN.B��kI/
has�k as its only

eigenvalue, so dimN.B � �kI / � nk . Since

q
X

kD1

nk D dimE D
q
X

kD1

dimN.B � �kI /;

we actually have dimN.B � �kI / D nk .

2.4 Operators on Generalized Eigenspaces

We’ve seen that the space on which a linear operator acts can be decomposed
into the direct sum of generalized eigenspaces of that operator. The operator
maps each of these generalized eigenspaces into itself, and, consequently, solu-
tions of the differential equation starting in a generalized eigenspace stay in that
generalized eigenspace for all time. Now we will see how the solutions within
such a subspace behave by seeing how the operator behaves on this subspace.

It may seem like nothing much can be said in general since, given a finite-
dimensional vector spaceV, we can define a nilpotent operatorS onV by

1. picking a basisfv1; : : : ; vmg for V;

2. creating a graph by connecting the nodesfv1; : : : ; vm; 0g with directed
edges in such a way that from each node there is a unique directed path
to 0;

3. definingS.vj / to be the unique nodevk such that there is a directed edge
from vj to vk ;

4. extendingS linearly to all ofV.

By adding any multiple ofI toS we have an operator for whichV is a generalized
eigenspace. It turns out, however, that there are really only a small number of
different possible structures that may arise from this seemingly general process.

To make this more precise, we first need a definition, some new notation, and
a lemma.

Definition. A subspaceZ of a vector spaceV is acyclic subspace ofS on V if
SZ � Z and there is somex 2 Z such thatZ is spanned byfx; Sx; S2x; : : :g.

Given S , note that every vectorx 2 V generates a cyclic subspace. Call
it Z.x/ or Z.x; S/. If S is nilpotent, write nil.x/ or nil.x; S/ for the smallest
nonnegative integerk such thatSkx D 0.
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Lemma. The setfx; Sx; : : : ; Snil.x/�1xg is a basis forZ.x/.

Proof. Obviously these vectors spanZ.x/; the question is whether they are lin-
early independent. If they were not, we could write down a linear combination
˛1S

p1xC� � �C˛kSpkx, with j̨ ¤ 0 and0 � p1 < p2 < � � � < pk � nil.x/�1,
that added up to zero. ApplyingSnil.x/�p1�1 to this linear combination would
yield ˛1Snil.x/�1x D 0, contradicting the definition of nil.x/.

Theorem. If S W V ! V is nilpotent thenV can be written as the direct sum of
cyclic subspaces ofS onV. The dimensions of these subspaces are determined
by the operatorS .

Proof. The proof is inductive on the dimension ofV. It is clearly true if dimV D
0 or 1. Assume it is true for all operators on spaces of dimension less than dimV.

Step 1:The dimension ofSV is less than the dimension ofV.
If this weren’t the case, thenS would be invertible and could not possibly be
nilpotent.

Step 2:For somek 2 N and for some nonzeroyj 2 SV, j D 1; : : : ; k,

SV D Z.y1/˚ � � � ˚ Z.yk/: (2.4)

This is a consequence of Step 1 and the induction hypothesis.

Pickxj 2 V such thatSxj D yj , for j D 1; : : : ; k. Suppose thatzj 2 Z.xj /

for eachj and
z1 C � � � C zk D 0: (2.5)

We will show thatzj D 0 for eachj . This will mean that the direct sum
Z.x1/˚ � � � ˚ Z.xk/ exists.

Step 3:Sz1 C � � � C Szk D 0.
This follows from applyingS to both sides of (2.5).

Step 4:For eachj , Szj 2 Z.yj /.
The fact thatzj 2 Z.xj / implies that

zj D ˛0xj C ˛1Sxj C � � � C ˛nil.xj /�1S
nil.xj /�1xj (2.6)

for somę i . Applying S to both sides of (2.6) gives

Szj D ˛0yj C ˛1Syj C � � � C ˛nil.xj /�2S
nil.xj /�2yj 2 Z.yj /:
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Step 5:For eachj , Szj D 0.
This is a consequence of Step 3, Step 4, and (2.4).

Step 6:For eachj , zj 2 Z.yj /.
If

zj D ˛0xj C ˛1Sxj C � � � C ˛nil.xj /�1S
nil.xj /�1xj

then by Step 5

0 D Szj D ˛0yj C ˛1Syj C � � � C ˛nil.xj /�2S
nil.xj /�2yj :

Since nil.xj /�2 D nil.yj /�1, the vectors in this linear combination are linearly
independent; thus,̨i D 0 for i D 0; : : : ;nil.xj / � 2. In particular,̨ 0 D 0, so

zj D ˛1yj C � � � C ˛nil.xj /�1S
nil.xj /�2yj 2 Z.yj /:

Step 7:For eachj , zj D 0.
This is a consequence of Step 6, (2.4), and (2.5).

We now know thatZ.x1/˚ � � � ˚Z.xk/ DW QV exists, but it is not necessarily
all of V. Choose a subspaceW of Null.S/ such that Null.S/ D . QV \ Null.S//˚
W. Choose a basisfw1; : : : ; w`g for W and note thatW D Z.w1/˚� � �˚Z.w`/.

Step 8:The direct sumZ.x1/˚ � � � ˚Z.xk/˚Z.w1/˚ � � � ˚Z.w`/ exists.
This is a consequence of the fact that the direct sumsZ.x1/˚ � � � ˚ Z.xk/ and
Z.w1/˚ � � � ˚ Z.w`/ exist and thatQV \ W D f0g.

Step 9:V D Z.x1/˚ � � � ˚ Z.xk/˚ Z.w1/˚ � � � ˚ Z.w`/.
Let x 2 V be given. Recall thatSx 2 SV D Z.y1/ ˚ � � � ˚ Z.yk/. Write
Sx D s1 C � � � C sk with sj 2 Z.yj /. If

sj D ˛0yj C ˛1Syj C � � � C ˛nil.yj /�1S
nil.yj /�1yj ;

let
uj D ˛0xj C ˛1Sxj C � � � C ˛nil.yj /�1S

nil.yj /�1xj ;

and note thatSuj D sj and thatuj 2 Z.xj /. Settingu D u1 C � � � C uk, we
have

S.x � u/ D Sx � Su D .s1 C � � � C sk/ � .s1 C � � � C sk/ D 0;
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sox � u 2 Null.S/. By definition ofW, that means that

x � u 2 Z.x1/˚ � � � ˚ Z.xk/˚ Z.w1/˚ � � � ˚ Z.w`/:

Sinceu 2 Z.x1/˚ � � � ˚ Z.xk/, we have

x 2 Z.x1/˚ � � � ˚ Z.xk/˚ Z.w1/˚ � � � ˚ Z.w`/:

This completes the proof of the first sentence in the theorem.The second
sentence follows similarly by induction.

2.5 Real Canonical Form

Real Canonical Form

We now use the information contained in the previous theorems to find simple
matrices representing linear operators. Clearly, a nilpotent operatorS on a cyclic
spaceZ.x/ can be represented by the matrix

2

6
6
6
6
6
6
6
4

0 � � � � � � � � � 0

1
: : :

:::

0
: : :

: : :
:::

:::
: : :

: : :
: : :

:::

0 � � � 0 1 0

3

7
7
7
7
7
7
7
5

;

with the corresponding basis beingfx; Sx; : : : ; Snil.x/�1xg. Thus, if � is an
eigenvalue of an operatorT , then the restriction ofT to a cyclic subspace of
T ��I on the generalized eigenspaceN.T ��I / can be represented by a matrix
of the form 2

6
6
6
6
6
6
6
4

� 0 � � � � � � 0

1
: : :

: : :
:::

0
: : :

: : :
: : :

:::
:::
: : :

: : :
: : : 0

0 � � � 0 1 �

3

7
7
7
7
7
7
7
5

: (2.7)

If � D a C bi 2 C n R is an eigenvalue of an operatorT 2 L.Rn;Rn/, and
Z.x; T ��I / is one of the cyclic subspaces whose direct sum isN.T � �I /, then
Z.x; T � �I / can be taken to be one of the cyclic subspaces whose direct sum
isN.T � �I /. If we setk D nil.x; T � �I /� 1 andyj D Re..T � �I /jx/ and
zj D Im..T � �I /jx/ for j D 0; : : : ; k, then we getTyj D ayj � bzj C yjC1
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2. LINEAR SYSTEMS

andT zj D byj C azj C zjC1 for j D 0; : : : ; k � 1, andTyk D ayk � bzk
and T zk D byk C azk. The 2k C 2 real vectorsfz0; y0; : : : ; zk ; ykg span
Z.x; T � �I /˚Z.x; T � �I / over C and also span a.2k C 2/-dimensional
space overR that is invariant underT . On this real vector space, the action ofT

can be represented by the matrix

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

a �b 0 0 � � � � � � � � � � � � 0 0

b a 0 0 � � � � � � � � � � � � 0 0

1 0
: : :

: : :
: : :

: : :
:::

:::

0 1
: : :

: : :
: : :

: : :
:::

:::

0 0
: : :

: : :
: : :

: : :
: : :

: : :
:::

:::

0 0
: : :

: : :
: : :

: : :
: : :

: : :
:::

:::
:::

:::
: : :

: : :
: : :

: : :
: : :

: : : 0 0
:::

:::
: : :

: : :
: : :

: : :
: : :

: : : 0 0

0 0 � � � � � � 0 0 1 0 a �b
0 0 � � � � � � 0 0 0 1 b a

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: (2.8)

The restriction of an operator to one of its generalized eigenspaces has a
matrix representation like

2

6
6
6
6
6
6
6
6
6
6
6
4

2

4

�

1 �

1 �

3

5

�

�

1 �

�

�

�
�

�

�
�

: : :

3

7
7
7
7
7
7
7
7
7
7
7
5

(2.9)

if the eigenvalue� is real, with blocks of the form (2.7) running down the diag-
onal. If the eigenvalue is complex, then the matrix representation is similar to
(2.9) but with blocks of the form (2.8) instead of the form (2.7) on the diagonal.

Finally, the matrix representation of the entire operator is block diagonal,
with blocks of the form (2.9) (or its counterpart for complexeigenvalues). This
is called thereal canonical form. If we specify the order in which blocks should
appear, then matrices are similar if and only if they have thesame real canonical
form.
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2.6 Solving Linear Systems

Exercise 7Classify all the real canonical forms for operators onR
4. In

other words, find a collection of4�4matrices, possibly with (real) variable
entries and possibly with constraints on those variables, such that

1. Only matrices in real canonical form match one of the matrices in
your collection.

2. Each operator onR4 has a matrix representation matching one of the
matrices in your collection.

3. No matrix matching one of your matrices is similar to a matrix match-
ing one of your other matrices.

For example, a suitable collection of matrices for operators onR
2 would be:

�

� 0

1 �

�

I
�

� 0

0 �

�

I
�

a �b
b a

�

; .b ¤ 0/:

Computing etA

Given an operatorA 2 L.Rn;Rn/, let M be its real canonical form. Write
M D S CN , whereS hasM ’s diagonal elements�k and diagonal blocks

�

a �b
b a

�

and0’s elsewhere, andN hasM ’s off-diagonal1’s and2�2 identity matrices. If
you consider the restrictions ofS andN to each of the cyclic subspaces ofA��I
into which the generalized eigenspaceN.A � �I / of A is decomposed, you’ll
probably be able to see that these restrictions commute. As aconsequence of this
fact (and the wayRn can be represented in terms of these cyclic subspaces),S

andN commute. ThusetM D etSetN .
Now, etS hase�kt whereS has�k, and has

�

eakt cosbkt �eak t sinbkt
eak t sinbkt eakt cosbkt

�

whereS has �

ak �bk
bk ak

�

:
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2. LINEAR SYSTEMS

The series definition can be used to computeetN , since the fact thatN is
nilpotent implies that the series is actually a finite sum. The entries ofetN will
be polynomials int . For example,

2

6
6
6
6
4

0

1
: : :

: : :
: : :

1 0

3

7
7
7
7
5

7!

2

6
6
6
6
4

1

t
: : :

:::
: : :

: : :

tm � � � t 1

3

7
7
7
7
5

and

2

6
6
6
6
6
6
6
6
6
4

�

0 0

0 0

�

�

1 0

0 1

�
: : :

: : :
: : :

�

1 0

0 1

� �

0 0

0 0

�

3

7
7
7
7
7
7
7
7
7
5

7!

2

6
6
6
6
6
6
6
6
6
4

�

1 0

0 1

�

�

t 0

0 t

�
: : :

:::
: : :

: : :
�

tm=mŠ 0

0 tm=mŠ

�

� � �
�

t 0

0 t

� �

1 0

0 1

�

3

7
7
7
7
7
7
7
7
7
5

:

IdentifyingA with its matrix representation with respect to the standardba-
sis, we haveA D PMP�1 for some invertible matrixP . Consequently,etA D
PetMP�1. Thus, the entries ofetA will be linear combinations of polynomials
times exponentials or polynomials times exponentials times trigonometric func-
tions.

Exercise 8ComputeetA (and justify your computations) if

1. A D

2

6
6
4

0 0 0 0

1 0 0 1

1 0 0 1

0 �1 1 0

3

7
7
5
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2. A D

2

6
6
4

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

3

7
7
5

Linear Planar Systems

A thorough understanding of constant coefficient linear systems Px D Ax in the
plane is very helpful in understanding systems that are nonlinear and/or higher-
dimensional.

There are 3 main categories of real canonical forms for an operator A in
L.R2;R2/:

�
�

� 0

0 �

�

�
�

� 0

1 �

�

�
�

a �b
b a

�

; .b ¤ 0/

We will subdivide these 3 categories further into a total of 14 categories and
consider the correspondingphase portraits, i.e., sketches of some of thetrajec-
toriesor parametric curves traced out by solutions in phase space.

A D
�

� 0

0 �

�

.� < 0 < �/

saddle

u2

u1b

1
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2. LINEAR SYSTEMS

A D
�

� 0

0 �

�

.� < � < 0/

stable node

u2

u1b

2

A D
�

� 0

0 �

�

.� D � < 0/

stable node

u2

u1b

3

A D
�

� 0

0 �

�

.0 < � < �/

unstable node

u2

u1b

4
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A D
�

� 0

0 �

�

.0 < � D �/

unstable node

u2

u1b

5

A D
�

� 0

0 �

�

.� < � D 0/

degenerate

u2

u1b

b

b

6

A D
�

� 0

0 �

�

.0 D � < �/

degenerate

u2

u1b

b

b

7
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A D
�

� 0

0 �

�

.0 D � D �/

degenerate

u2

u1b

b

b

b

b

b

b

bb

8

A D
�

� 0

1 �

�

.� < 0/

stable node

u2

u1b

9

A D
�

� 0

1 �

�

.0 < �/

unstable node

u2

u1b

10
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A D
�

� 0

1 �

�

.� D 0/

degenerate

u2

u1b

b

b

11

A D
�

a �b
b a

�

.a < 0 < b/

stable spiral

u2

u1b

12

A D
�

a �b
b a

�

.b < 0 < a/

unstable spiral

u2

u1b

13
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A D
�

a �b
b a

�

.a D 0; b > 0/

center

u2

u1b

14

If A is not in real canonical form, then the phase portrait shouldlook (topo-
logically) similar but may be rotated, flipped, skewed, and/or stretched.

2.7 Qualitative Behavior of Linear Systems

Parameter Plane

Some of the information from the preceding phase portraits can be summarized
in a parameter diagram. In particular, let� D traceA and letı D detA, so the
characteristic polynomial is�2���Cı. Then the behavior of the trivial solution
x.t/ � 0 is given by locating the corresponding point in the.�; ı/-plane:

ı

�degenerate degenerate

center ı D
�
2 =4

unstable spiralstable spiral

unstable nodestable node

saddle
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Qualitative Behavior of Linear Systems

Growth and Decay Rates

GivenA 2 L.Rn;Rn/, let

Eu D
(
M

�>0

N.A � �I /
)

˚
8

ˆ
<̂

ˆ
:̂

M

Re�>0
Im�¤0

˚

Reu
ˇ
ˇ u 2 N.A � �I /

	

9

>
>=

>
>;

˚

8

ˆ
<̂

ˆ
:̂

M

Re�>0
Im�¤0

˚

Imu
ˇ
ˇ u 2 N.A� �I /

	

9

>
>=

>
>;

;

Es D
(
M

�<0

N.A� �I /
)

˚
8

ˆ
<̂

ˆ
:̂

M

Re�<0
Im�¤0

˚

Reu
ˇ
ˇ u 2 N.A � �I /

	

9

>
>=

>
>;

˚

8

ˆ
<̂

ˆ
:̂

M

Re�<0
Im�¤0

˚

Imu
ˇ
ˇ u 2 N.A� �I /

	

9

>
>=

>
>;

;

and

Ec D N.A/˚
8

ˆ̂
<

ˆ̂
:

M

Re�D0
Im�¤0

˚

Reu
ˇ
ˇ u 2 N.A� �I /

	

9

>>=

>>;

˚

8

ˆ̂
<

ˆ̂
:

M

Re�D0
Im�¤0

˚

Imu
ˇ
ˇ u 2 N.A � �I /

	

9

>>=

>>;

:

From our previous study of the real canonical form, we know that

R
n D Eu ˚ Es ˚ Ec :

We callEu theunstable spaceof A, Es thestable spaceof A, andEc thecenter
spaceof A.

Each of these subspaces ofR
n is invariant under the differential equation

Px D Ax: (2.10)

In other words, ifx W R ! R
n is a solution of (2.10) andx.0/ is in Eu, Es,

or Ec , thenx.t/ is in Eu, Es, or Ec , respectively, for allt 2 R. We shall see
that each of these spaces is characterized by the growth or decay rates of the
solutions it contains. Before doing so, we state and prove a basic fact about
finite-dimensional normed vector spaces.

Theorem.All norms onR
n are equivalent.
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2. LINEAR SYSTEMS

Proof. Since equivalence of norms is transitive, it suffices to prove that every
normN W R

n ! R is equivalent to the standard Euclidean normj � j.
Given an arbitrary normN , and lettingxi be the projection ofx 2 R

n onto
thei th standard basis vectorei , note that

N.x/ D N

 
n
X

iD1

xiei

!

�
n
X

iD1

jxi jN.ei / �
n
X

iD1

jxjN.ei/

�
 
n
X

iD1

N.ei /

!

jxj:

This shows half of equivalence; it also shows thatN is continuous, since, by the
triangle inequality,

jN.x/�N.y/j � N.x � y/ �
 

n
X

iD1

N.ei /

!

jx � yj:

The setS WD
˚

x 2 R
n
ˇ
ˇ jxj D 1

	

is clearly closed and bounded and, therefore,
compact, so by the extreme value theorem,N must achieve a minimum onS.
SinceN is a norm (and is, therefore, positive definite), this minimum must be
strictly positive; call itk. Then for anyx ¤ 0,

N.x/ D N

�

jxj xjxj

�

D jxjN
�
x

jxj

�

� kjxj;

and the estimateN.x/ � kjxj obviously holds ifx D 0, as well.

Theorem.GivenA 2 L.Rn;Rn/ and the corresponding decompositionR
n D

Eu ˚ Es ˚ Ec, we have

Eu D
[

c>0

˚

x 2 R
n
ˇ
ˇ lim
t#�1

je�ctetAxj D 0
	

; (2.11)

Es D
[

c>0

˚

x 2 R
n
ˇ
ˇ lim
t"1

jectetAxj D 0
	

; (2.12)

and

Ec D
\

c>0

˚

x 2 R
n
ˇ
ˇ lim
t#�1

jectetAxj D lim
t"1

je�ctetAxj D 0
	

: (2.13)

Proof. By equivalence of norms, instead of using the standard Euclidean norm
on R

n we can use the norm

kxk WD supfjP1xj; : : : ; jPnxjg;
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Qualitative Behavior of Linear Systems

wherePi W R
n ! R represents projection onto thei th basis vector corresponding

to the real canonical form. Because of our knowledge of the structure of the real
canonical form, we know thatPietAx is either of the form

p.t/e�t ; (2.14)

wherep.t/ is a polynomial int and� 2 R is an eigenvalue ofA, or of the form

p.t/eat .˛ cosbt C ˇ sinbt/; (2.15)

wherep.t/ is a polynomial int , aC bi 2 C n R is an eigenvalue ofA, and˛ and
ˇ are real constants. Furthermore, we know that the constant� or a is positive if
Pi corresponds to a vector inEu , is negative ifPi corresponds to a vector inEs,
and is zero ifPi corresponds to a vector inEc.

Now, letx 2 R
n be given. Suppose first thatx 2 Es. Then eachPietAx is

either identically zero or has as a factor a negative exponential whose constant is
the real part of an eigenvalue ofA that is to the left of the imaginary axis in the
complex plane. Let�.A/ be the set of eigenvalues ofA, and set

c D
ˇ
ˇmax

˚

Re�
ˇ
ˇ � 2 �.A/ and Re� < 0

	ˇ
ˇ

2
:

ThenectPietAx is either identically zero or decays exponentially to zero as t "
1.

Conversely, supposex … Es. ThenPix ¤ 0 for somePi corresponding to a
real canonical basis vector inEu or in Ec. In either case,PietAx is not identically
zero and is of the form (2.14) where� � 0 or of the form (2.15) wherea � 0.
Thus, ifc > 0 then

lim sup
t"1

jectPietAxj D 1;

so
lim sup
t"1

kectetAxk D 1:

The preceding two paragraphs showed that (2.12) is correct.By applying
this fact to the time-reversed problemPx D �Ax, we find that (2.11) is correct,
as well. We now consider (2.13).

If x 2 Ec , then for eachi , PietAx is either a polynomial or the product of a
polynomial and a periodic function. Ifc > 0 and we multiply such a function of
t by ect and lett # �1 or we multiply it bye�ct and lett " 1, then the result
converges to zero.

If, on the other hand,x … Ec then for somei , PietAx contains a nontrivial
exponential term. Ifc > 0 is sufficiently small then eitherectPietAx diverges
ast # �1 or e�ctPie

tAx diverges ast " 1. This completes the verification of
(2.13).
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2.8 Exponential Decay

Definition. If Eu D R
n, we say that the origin is asourceandetA is anexpan-

sion.

Definition. If Es D R
n, we say that the origin is asinkandetA is acontraction.

Theorem.

(a) The origin is a source for the equationPx D Ax if and only if for a given
normk � k there are constantsk; b > 0 such that

ketAxk � ketbkxk

for everyt � 0 andx 2 R
n.

(b) The origin is a sink for the equationPx D Ax if and only if for a given norm
k � k there are constantsk; b > 0 such that

ketAxk � ke�tbkxk

for everyt � 0 andx 2 R
n.

Proof. The “if” parts are a consequence of the previous theorem. The“only if”
parts follow from the proof of the previous theorem.

Note that a contraction does not always “contract” things immediately;i.e.,
jetAxj — jxj, in general. For example, consider

A D
�

�1=4 0

1 �1=4

�

:

If

x.t/ D
�

x1.t/

x2.t/

�

is a solution ofPx D Ax, then

d

dt
jx.t/j2 D 2hx; Pxi D 2

�

x1 x2
�
�

�1=4 0

1 �1=4

� �

x1
x2

�

D �1
2
x21 C 2x1x2 � 1

2
x22 D x1x2 � 1

2
.x1 � x2/2;

which is greater than zero if, for example,x1 D x2 > 0. However, we have the
following:
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Theorem.

(a) If etA is an expansion then there issomenormk � k and some constantb > 0
such that

ketAxk � etbkxk

for everyt � 0 andx 2 R
n.

(b) If etA is a contraction then there issomenormk � k and some constantb > 0
such that

ketAxk � e�tbkxk

for everyt � 0 andx 2 R
n.

Proof. The idea of the proof is to pick a basis with respect to whichA is rep-
resented by a matrix like the real canonical form but with some small constant
" > 0 in place of the off-diagonal1’s. (This can be done by rescaling.) If the
Euclidean norm with respect to this basis is used, the desired estimates hold. The
details of the proof may be found in Chapter 7,÷1, of Hirsch and Smale.

Exercise 9

(a) Show that ifetA andetB are both contractions onRn, andBA D AB,
thenet .ACB/ is a contraction.

(b) Give a concrete example that shows that(a) can fail if the assumption
thatAB D BA is dropped.

Exercise 10Problem 5 on page 137 of Hirsch and Smale reads:
“For any solution toPx D Ax, A 2 L.Rn;Rn/, show that exactly one of

the following alternatives holds:

(a) lim
t"1

x.t/ D 0 and lim
t#�1

jx.t/j D 1;

(b) lim
t"1

jx.t/j D 1 and lim
t#�1

x.t/ D 0;

(c) there exist constantsM;N > 0 such thatM < jx.t/j < N for all
t 2 R.”
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Is what they ask you to prove true? If so, prove it. If not, determine what
other possible alternatives exist, and prove that you have accounted for all
possibilities.

2.9 Nonautonomous Linear Systems

We now move from the constant coefficient equationPx D Ax to the nonau-
tonomous equation

Px D A.t/x: (2.16)

For simplicity we will assume that the domain ofA is R.

Solution Formulas

In the scalar, or one-dimensional, version of (2.16)

Px D a.t/x (2.17)

we can separate variables and arrive at the formula

x.t/ D x0e
R t

t0
a.�/ d�

for the solution of (2.17) that satisfies the initial condition x.t0/ D x0.
It seems like the analogous formula for the solution of (2.16) with initial

conditionx.t0/ D x0 should be

x.t/ D e
R t

t0
A.�/ d�

x0: (2.18)

Certainly, the right-hand side of (2.18) makes sense (assuming thatA is continu-
ous). But does it give the correct answer?

Let’s consider a specific example. Let

A.t/ D
�

0 0

1 t

�

andt0 D 0. Note that

Z t

0

A.�/ d� D
�

0 0

t t2=2

�

D t2

2

�

0 0

2=t 1

�

;

52



Nonautonomous Linear Systems

and

e

2

4
0 0

t t2=2

3

5

D
�

1 0

0 1

�

C t2

2

�

0 0

2=t 1

�

C

�
t2

2

�2

2Š

�

0 0

2=t 1

�

C � � �

D
�

1 0

0 1

�

C
�

et
2=2 � 1

� �

0 0

2=t 1

�

D
"

1 0
2
t

�

et
2=2 � 1

�

et
2=2

#

:

On the other hand, we can solve the corresponding system

Px1 D 0

Px2 D x1 C tx2

directly. Clearlyx1.t/ D ˛ for some constant̨ . Plugging this into the equation
for x2, we have a first-order scalar equation which can be solved by finding an
integrating factor. This yields

x2.t/ D ˇet
2=2 C ˛et

2=2

Z t

0

e�s2=2 ds

for some constanť . Sincex1.0/ D ˛ andx2.0/ D ˇ, the solution of (2.16) is

�

x1.t/

x2.t/

�

D
�

1 0

et
2=2

R t
0 e

�s2=2 ds et
2=2

� �

x1.0/

x2.0/

�

:

Since

et
2=2

Z t

0

e�s2=2 ds ¤ 2

t

�

et
2=2 � 1

�

(2.18) doesn’t work? What went wrong? The answer is that

d

dt
e
R t

0 A.�/d� D lim
h!0

e
R tCh

0 A.�/d� � e
R t

0 A.�/d�

h

¤ lim
h!0

e
R t

0 A.�/d�
h

e
R tCh

t A.�/d� � I
i

h
;

in general, because of possible noncommutativity.

Structure of Solution Set

We abandon attempts to find a general formula for solving (2.16), and instead
analyze the general structure of the solution set.
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Definition. If x.1/; x.2/; : : : ; x.n/ are linearly independent solutions of (2.16)
(i.e., no nontrivial linear combination gives the zero function)then the matrix

X.t/ WD
�

x.1/.t/ � � � x.n/.t/
�

is called afundamental matrixfor (2.16).

Theorem.The dimension of the vector space of solutions of(2.16) is n.

Proof. Pick n linearly independent vectorsv.k/ 2 R
n, k D 1; : : : ; n, and let

x.k/ be the solution of (2.16) that satisfies the initial condition x.k/.0/ D v.k/.
Then thesen solutions are linearly independent. Furthermore, we claimthat
any solutionx of (2.16) is a linear combination of thesen solutions. To see
why this is so, note thatx.0/ must be expressible as a linear combination of
fv.1/; : : : ; v.n/g. The corresponding linear combination offx.1/; : : : ; x.n/g is, by
linearity, a solution of (2.16) that agrees withx at t D 0. SinceA is continuous,
the Picard-Lindelöf Theorem applies to (2.16) to tell us that solutions of IVPs are
unique, so this linear combination offx.1/; : : : ; x.n/g must be identical tox.

Definition. If X.t/ is a fundamental matrix andX.0/ D I , then it is called the
principal fundamental matrix. (Uniqueness of solutions implies that there is only
one such matrix.)

Definition. Given n functions (in some order) fromR to R
n, their Wronskian

is the determinant of the matrix that has these functions as its columns (in the
corresponding order).

Theorem.The Wronskian ofn solutions of(2.16) is identically zero if and only
if the solutions are linearly dependent.

Proof. Supposex.1/; : : : ; x.n/ are linearly dependent solutions;i.e.,

n
X

kD1

˛kx
.k/ D 0

for some constants̨1; : : : ; ˛n with
Pn
kD1 ˛

2
k

¤ 0. Then
Pn
kD1 ˛kx

.k/.t/ is 0
for every t , so the columns of the WronskianW.t/ are linearly dependent for
everyt . This meansW � 0.

Conversely, suppose that the WronskianW of n solutionsx.1/; : : : ; x.n/ is
identically zero. In particular,W.0/ D 0, sox.1/.0/; : : : ; x.n/.0/ are linearly
dependent vectors. Pick constants˛1; : : : ; ˛n, with

Pn
kD1 ˛

2
k

nonzero, such that
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Pn
kD1 ˛kx

.k/.0/ D 0. The function
Pn
kD1 ˛kx

.k/ is a solution of (2.16) that is
0 when t D 0, but so is the function that is identically zero. By uniqueness of
solutions,

Pn
kD1 ˛kx

.k/ D 0; i.e., x.1/; : : : ; x.n/ are linearly dependent.

Note that this proof also shows that if the Wronskian ofn solutions of (2.16)
is zero for somet , then it is zero for allt .

What if we’re dealing withn arbitrary vector-valued functions (that are not
necessarily solutions of (2.16))? If they are linearly dependent then their Wron-
skian is identically zero, but the converse is not true. For example,

�

1

0

�

and

�

t

0

�

have a Wronskian that is identically zero, but they are not linearly dependent.
Also, n functions can have a Wronskian that is zero for somet and nonzero for
othert . Consider, for example,

�

1

0

�

and

�

0

t

�

:

Initial-Value Problems

Given a fundamental matrixX.t/ for (2.16), defineG.t; t0/ to be the quantity
X.t/ŒX.t0/�

�1. We claim thatx.t/ WD G.t; t0/v solves the IVP
(

Px D A.t/x

x.t0/ D v:

To verify this, note that

d

dt
x D d

dt
.X.t/ŒX.t0/�

�1v/ D A.t/X.t/ŒX.t0/�
�1v D A.t/x;

and
x.t0/ D G.t0; t0/v D X.t0/ŒX.t0/�

�1v D v:

Inhomogeneous Equations

Consider the IVP (

Px D A.t/x C f .t/

x.t0/ D x0:
(2.19)

In light of the results from the previous section whenf was identically zero, it’s
reasonable to look for a solutionx of (2.19) of the formx.t/ WD G.t; t0/y.t/,
whereG is as before, andy is some vector-valued function.
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Note that

Px.t/ D A.t/X.t/ŒX.t0/�
�1y.t/CG.t; t0/ Py.t/ D A.t/x.t/CG.t; t0/ Py.t/I

therefore, we needG.t; t0/ Py.t/ D f .t/. Isolating, Py.t/, we need

Py.t/ D X.t0/ŒX.t/�
�1f .t/ D G.t0; t/f .t/: (2.20)

Integrating both sides of (2.20), we see thaty should satisfy

y.t/ � y.t0/ D
Z t

t0

G.t0; s/f .s/ ds:

If x.t0/ is to bex0, then, sinceG.t0; t0/ D I , we needy.t0/ D x0, soy.t/
should be

x0 C
Z t

t0

G.t0; s/f .s/ ds;

or, equivalently,x.t/ should be

G.t; t0/x0 C
Z t

t0

G.t; s/f .s/ ds;

sinceG.t; t0/G.t0; s/ D G.t; s/. This is called the Variation of Constants for-
mula or the Variation of Parameters formula.

2.10 Nearly Autonomous Linear Systems

SupposeA.t/ is, in some sense, close to a constant matrixA. The question we
wish to address in this section is the extent to which solutions of the nonau-
tonomous system

Px D A.t/x (2.21)

behave like solutions of the autonomous system

Px D Ax: (2.22)

Before getting to our main results, we present a pair of lemmas.

Lemma. The following are equivalent:

1. Each solution of(2.22) is bounded ast " 1.

2. The functiont 7! ketAk is bounded ast " 1 (wherek � k is the usual
operator norm).
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3. Re� � 0 for every eigenvalue� ofA and the algebraic multiplicity of each
purely imaginary eigenvalue matches its geometric multiplicity.

Proof. That statement 2 implies statement 1 is a consequence of the definition of
the operator norm, since, for each solutionx of (2.22),

jx.t/j D jetAx.0/j � ketAk � jx.0/j:

That statement 1 implies statement 3, and statement 3 implies statement 2 are
consequences of what we have learned about the real canonical form of A, along
with the equivalence of norms onRn.

Lemma. (Generalized Gronwall Inequality) SupposeX andˆ are nonnega-
tive, continuous, real-valued functions onŒt0; T � for which there is a nonnegative
constantC such that

X.t/ � C C
Z t

t0

ˆ.s/X.s/ ds;

for everyt 2 Œt0; T �. Then

X.t/ � Ce
R t

t0
ˆ.s/ ds

:

Proof. The proof is very similar to the proof of the standard Gronwall inequality.
The details are left to the reader.

The first main result deals with the case whenA.t/ converges toA sufficiently
quickly ast " 1.

Theorem.Suppose that each solution of(2.22)remains bounded ast " 1 and
that, for somet0 2 R,

Z 1

t0

kA.t/ � Akdt < 1; (2.23)

wherek � k is the standard operator norm. Then each solution of(2.21)remains
bounded ast " 1.

Proof. Let t0 be such that (2.23) holds. Given a solutionx of (2.21), letf .t/ D
.A.t/�A/x.t/, and note thatx satisfies the constant-coefficient inhomogeneous
problem

Px D Ax C f .t/: (2.24)
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Since the matrix exponential provides a fundamental matrixsolution to constant-
coefficient linear systems, applying the variation of constants formula to (2.24)
yields

x.t/ D e.t�t0/Ax.t0/C
Z t

t0

e.t�s/A.A.s/ � A/x.s/ ds: (2.25)

Now, by the first lemma, the boundedness of solutions of (2.22) in forward
time tells us that there is a constantM > 0 such thatketAk � M for every
t � t0. Taking norms and estimating, gives (fort � t0)

jx.t/j � ke.t�t0/Ak � jx.t0/j C
Z t

t0

ke.t�s/Ak � kA.s/ � Ak � jx.s/jds

� M jx.t0/j C
Z t

t0

MkA.s/ � Ak � jx.s/jds:

SettingX.t/ D jx.t/j, ˆ.t/ D MkA.t/ � Ak, andC D M jx.t0/j, and
applying the generalized Gronwall inequality, we find that

jx.t/j � M jx.t0/jeM
R t

t0
kA.s/�Akds

:

By (2.23), the right-hand side of this inequality is boundedon Œt0;1/, sox.t/ is
bounded ast " 1.

The next result deals with the case when the origin is a sink for (2.22). Will
the solutions of (2.21) also all converge to the origin ast " 1? Yes, ifkA.t/�Ak
is sufficiently small.

Theorem.Suppose all the eigenvalues ofA have negative real part. Then there
is a constant" > 0 such that ifkA.t/ � Ak � " for all t sufficiently large then
every solution of(2.21)converges to0 as t " 1.

Proof. Since the origin is a sink, we know that we can choose constants k; b > 0
such thatketAk � ke�bt for all t � 0. Pick a constant" 2 .0; b=k/, and assume
that there is a timet0 2 R such thatkA.t/ � Ak � " for everyt � t0.

Now, given a solutionx of (2.21) we can conclude, as in the proof of the
previous theorem, that

jx.t/j � ke.t�t0/Ak � jx.t0/j C
Z t

t0

ke.t�s/Ak � kA.s/ � Ak � jx.s/jds

for all t � t0. This implies that

jx.t/j � ke�b.t�t0/jx.t0/j C
Z t

t0

ke�b.t�s/"jx.s/jds
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for all t � t0. Multiplying through byeb.t�t0/ and settingy.t/ WD eb.t�t0/jx.t/j
yield

y.t/ � kjx.t0/j C k"

Z t

t0

y.s/ ds

for all t � t0. The standard Gronwall inequality applied to this estimategives

y.t/ � kjx.t0/jek".t�t0/

for all t � t0, or, equivalently,

jx.t/j � kjx.t0/je.k"�b/.t�t0/

for all t � t0. Since" < b=k, this inequality implies thatx.t/ ! 0 as t "
1.

Thus, the origin remains a “sink” even when we perturbA by a small time-
dependent quantity. Can we perhaps just look at the (possibly, time-dependent)
eigenvalues ofA.t/ itself and conclude, for example, that if all of those eigen-
values have negative real part for allt then all solutions of (2.21) converge to the
origin ast " 1? The following example of Markus and Yamabe shows that the
answer is “No”.

Exercise 11Show that if

A.t/ D
�

�1C 3
2

cos2 t 1 � 3
2

sint cost
�1� 3

2
sint cost �1C 3

2
sin2 t

�

then the eigenvalues ofA.t/ both have negative real part for everyt 2 R,
but

x.t/ WD
�

� cost
sint

�

et=2;

which becomes unbounded ast ! 1, is a solution to (2.21).

2.11 Periodic Linear Systems

We now consider

Px D A.t/x (2.26)
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2. LINEAR SYSTEMS

whenA is a continuous periodicn � n matrix function oft ; i.e., when there is a
constantT > 0 such thatA.tCT / D A.t/ for everyt 2 R. When that condition
is satisfied, we say, more precisely, thatA is T -periodic. If T is the smallest
positive number for which this condition holds, we say thatT is the minimal
period of A. (Every continuous, nonconstant periodic functionhasa minimal
period).

LetA beT -periodic, and letX.t/ be a fundamental matrix for (2.26). Define
QX W R ! L.Rn;Rn/ by QX.t/ D X.t C T /. Clearly, the columns ofQX are

linearly independent functions oft . Also,

d

dt
QX.t/ D d

dt
X.t C T / D X 0.t C T / D A.t C T /X.t C T / D A.t/ QX.t/;

so QX solves the matrix equivalent of (2.26). Hence,QX is a fundamental matrix
for (2.26).

Because the dimension of the solution space of (2.26) isn, this means that
there is a nonsingular (constant) matrixC such thatX.tCT / D X.t/C for every
t 2 R. C is called amonodromymatrix.

Lemma. There existsB 2 L.Cn;Cn/ such thatC D eTB .

Proof. Without loss of generality, we assume thatT D 1, since if it isn’t we can
just rescaleB by a scalar constant. We also assume, without loss of generality,
thatC is in Jordan canonical form. (If it isn’t, then use the fact thatP�1CP D
eB implies thatC D ePBP

�1

.) Furthermore, because of the way the matrix
exponential acts on a block diagonal matrix, it suffices to show that for each
p � p Jordan block

QC WD

2

6
6
6
6
6
6
6
4

� 0 � � � � � � 0

1
: : :

: : :
:::

0
: : :

: : :
: : :

:::
:::
: : :

: : :
: : : 0

0 � � � 0 1 �

3

7
7
7
7
7
7
7
5

;

QC D e
QB for some QB 2 L.Cp;Cp/.

Now, an obvious candidate forQB is the natural logarithm ofQC , defined in
some reasonable way. Since the matrix exponential was defined by a power se-
ries, it seems reasonable to use a similar definition for a matrix logarithm. Note
that QC D �ICN D �I.IC��1N/, whereN is nilpotent. (SinceC is invertible,
we know that all of the eigenvalues� are nonzero.) We guess

QB D .log�/I C log.I C ��1N/; (2.27)
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where

log.I CM/ WD �
1
X

kD1

.�M/k

k
;

in analogy to the Maclaurin series for log.1 C x/. SinceN is nilpotent, this
series terminates in our application of it to (2.27). Directsubstitution shows that

e
QB D QC , as desired.

The eigenvalues� of C are called theFloquet multipliers(or characteristic
multipliers) of (2.26). The corresponding numbers� satisfying� D e�T are
called theFloquet exponents(or characteristic exponents) of (2.26). Note that
the Floquet exponents are only determined up to a multiple of.2�i/=T . Given
B for whichC D eTB , the exponents can be chosen to be the eigenvalues ofB.

Theorem.There exists aT -periodic functionP W R ! L.Rn;Rn/ such that

X.t/ D P.t/etB :

Proof. LetP.t/ D X.t/e�tB . Then

P.t C T / D X.t C T /e�.tCT /B D X.t C T /e�TBe�tB D X.t/Ce�TBe�tB

D X.t/eTBe�TBe�tB D X.t/e�tB D P.t/:

The decomposition ofX.t/ given in this theorem shows that the behavior of
solutions can be broken down into the composition of a part that is periodic in
time and a part that is exponential in time. Recall, however,thatB may have
entries that are not real numbers, soP.t/ may be complex, also. If we want
to decomposeX.t/ into a real periodic matrix times a matrix of the formetB

whereB is real, we observe thatX.t C 2T / D X.t/C 2, whereC is the same
monodromy matrix as before. It can be shown that thesquareof a real matrix
can be written as the exponential of areal matrix. WriteC 2 D eTB with B real,
and letP.t/ D X.t/e�tB as before. Then,X.t/ D P.t/etB whereP is now
2T -periodic, and everything is real.

The Floquet multipliers and exponents do not depend on the particular fun-
damental matrix chosen, even though the monodromy matrix does. They depend
only onA.t/. To see this, letX.t/ andY.t/ be fundamental matrices with corre-
sponding monodromy matricesC andD. BecauseX.t/ andY.t/ are fundamen-
tal matrices, there is a nonsingular constant matrixS such thatY.t/ D X.t/S for
all t 2 R. In particular,Y.0/ D X.0/S andY.T / D X.T /S . Thus,C D

ŒX.0/��1X.T / D SŒY.0/��1Y.T /S�1 D SŒY.0/��1Y.0/DS�1 D SDS�1:
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This means that the monodromy matrices are similar and, therefore, have the
same eigenvalues.

Interpreting Floquet Multipliers and Exponents

Theorem. If � is a Floquet multiplier of(2.26)and� is a corresponding Floquet
exponent, then there is a nontrivial solutionx of (2.26) such thatx.t C T / D
�x.t/ for everyt 2 R andx.t/ D e�tp.t/ for someT -periodic vector function
p.

Proof. Pick x0 to be an eigenvector ofB corresponding to the eigenvalue�,
whereX.t/ D P.t/etB is the decomposition of a fundamental matrixX.t/. Let
x.t/ D X.t/x0. Then, clearly,x solves (2.26). The power series formula for the
matrix exponential implies thatx0 is an eigenvector ofetB with eigenvaluee�t .
Hence,

x.t/ D X.t/x0 D P.t/etBx0 D P.t/e�tx0 D e�tp.t/;

wherep.t/ D P.t/x0. Also,

x.t C T / D e�T e�tp.t C T / D �e�tp.t/ D �x.t/:

Time-dependent Change of Variables

Let x solve (2.26), and lety.t/ D ŒP.t/��1x.t/, whereP is as defined previ-
ously. Then

d

dt
ŒP.t/y.t/� D d

dt
x.t/ D A.t/x.t/ D A.t/P.t/y.t/

D A.t/X.t/e�tBy.t/:

But

d

dt
ŒP.t/y.t/� D P 0.t/y.t/C P.t/y0.t/

D ŒX 0.t/e�tB �X.t/e�tBB�y.t/CX.t/e�tBy0.t/

D A.t/X.t/e�tBy.t/ �X.t/e�tBBy.t/CX.t/e�tBy0.t/;

so
X.t/e�tBy0.t/ D X.t/e�tBBy.t/;

which implies thaty0.t/ D By.t/; i.e., y solves a constant coefficient linear
equation. SinceP is periodic and, therefore, bounded, the growth and decay of
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x andy are closely related. Furthermore, the growth or decay ofy is determined
by the eigenvalues ofB, i.e., by the Floquet exponents of (2.26). For example,
we have the following results.

Theorem. If all the Floquet exponents of(2.26)have negative real parts then all
solutions of(2.26)converge to 0 ast " 1.

Theorem. If there is a nontrivialT -periodic solution of(2.26) then there must
be a Floquet multiplier of modulus 1.

Computing Floquet Multipliers and Exponents

Although Floquet multipliers and exponents are determinedby A.t/, it is not
obvious how to calculate them. As a previous exercise illustrated, the eigenvalues
of A.t/ don’t seem to be extremely relevant. The following result helps a little
bit.

Theorem. If (2.26)has Floquet multipliers�1; : : : ; �n and corresponding Flo-
quet exponents�1; : : : ; �n, then

�1 � � � �n D exp

 
Z T

0

traceA.t/ dt

!

(2.28)

and

�1 C � � � C �n � 1

T

Z T

0

traceA.t/ dt mod
2�i

T
(2.29)

Proof. We focus on (2.28). The formula (2.29) will follow immediately from
(2.28).

Let W.t/ be the determinant of the principal fundamental matrixX.t/. Let
Sn be the set of permutations off1; 2; : : : ; ng and let� W Sn ! f�1; 1g be the
parity map. Then

W.t/ D
X

�2Sn

�.�/

n
Y

iD1

Xi;�.i/;

whereXi;j is the.i; j /-th entry ofX.t/.
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Differentiating yields

dW.t/

dt
D
X

�2Sn

�.�/
d

dt

n
Y

iD1

Xi;�.i/

D
n
X

jD1

X

�2Sn

�.�/

�
d

dt
Xj;�.j /

�
Y

i¤j

Xi;�.i/

D
n
X

jD1

X

�2Sn

�.�/

"
n
X

kD1

Aj;k.t/Xk;�.j /

#
Y

i¤j

Xi;�.i/

D
n
X

jD1

n
X

kD1

Aj;k.t/

2

4
X

�2Sn

�.�/Xk;�.j /
Y

i¤j

Xi;�.i/

3

5 :

If j ¤ k, the inner sum is the determinant of the matrix obtained by replacing
thej th row ofX.t/ by its kth row. This new matrix, having two identical rows,
must necessarily have determinant 0. Hence,

dW.t/

dt
D

n
X

jD1

Aj;j .t/detX.t/ D ŒtraceA.t/�W.t/:

Thus,

W.t/ D e
R t

0 traceA.s/ dsW.0/ D e
R t

0 traceA.s/ds :

In particular,

e
R T

0 traceA.s/ ds D W.T / D detX.T / D det.P.T /eTB/ D det.P.0/eTB/

D deteTB D detC D �1�2 � � � �n:

Exercise 12Consider (2.26) where

A.t/ D
�
1
2

� cost b

a 3
2

C sint

�

anda andb are constants. Show that there is a solution of (2.26) that be-
comes unbounded ast " 1.
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Topological Dynamics

3.1 Invariant Sets and Limit Sets

We will now begin a study of the continuously differentiableautonomous system

Px D f .x/

or, equivalently, of the corresponding dynamical system'.t; x/. We will denote
the phase space� and assume that it is an open (not necessarily proper) subset
of R

n.

Orbits

Definition. Givenx 2 �, the(complete) orbitthroughx is the set

.x/ WD
˚

'.t; x/
ˇ
ˇ t 2 R

	

;

thepositive semiorbitthroughx is the set

C.x/ WD
˚

'.t; x/
ˇ
ˇ t � 0g;

and thenegative semiorbitthroughx is the set

�.x/ WD
˚

'.t; x/
ˇ
ˇ t � 0g:

Invariant Sets

Definition. A setM � � is invariant under' if it contains the complete orbit
of every point ofM. In other words, for everyx 2 M and everyt 2 R,
'.t; x/ 2 M.

Definition. A setM � � ispositively invariantunder' if it contains the positive
semiorbit of every point ofM. In other words, for everyx 2 M and everyt � 0,
'.t; x/ 2 M.
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Definition. A setM � � is negatively invariantunder' if it contains the nega-
tive semiorbit of every point ofM. In other words, for everyx 2 M and every
t � 0, '.t; x/ 2 M.

Limit Sets

Definition. Givenx 2 �, the!-limit set ofx, denoted!.x/, is the set

˚

y 2 �
ˇ
ˇ lim inf
t"1

j'.t; x/ � yj D 0
	

D
˚

y 2 �
ˇ
ˇ 9t1; t2; : : : ! 1 s.t.'.tk ; x/ ! y ask " 1

	

:

Definition. Givenx 2 �, the˛-limit set ofx, denoted̨ .x/, is the set

˚

y 2 �
ˇ
ˇ lim inf
t#�1

j'.t; x/ � yj D 0
	

D
˚

y 2 �
ˇ
ˇ 9t1; t2; : : : ! �1 s.t.'.tk ; x/ ! y ask " 1

	

:

Lemma. If, for eachA 2 �, we letA represent the topological closure ofA in
�, then

!.x/ D
\

�2R

C.'.�; x// (3.1)

and

˛.x/ D
\

�2R

�.'.�; x//: (3.2)

Proof. It suffices to prove (3.1); (3.2) can then be established by time reversal.
Lety 2 !.x/ be given. Pick a sequencet1; t2; : : : ! 1 such that'.tk ; x/ !

y ask " 1. Let � 2 R be given. PickK 2 N such thattk � � for all k � K.
Note that'.tk ; x/ 2 C.'.�; x// for all k � K, so

y 2 C.'.�; x//:

Since this holds for all� 2 R, we know that

y 2
\

�2R

C.'.�; x//: (3.3)

Since (3.3) holds for eachy 2 !.x/, we know that

!.x/ �
\

�2R

C.'.�; x//: (3.4)
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Now, we prove the reverse inclusion. Let

y 2
\

�2R

C.'.�; x//

be given. This implies, in particular, that

y 2
\

�2N

C.'.�; x//:

For eachk 2 N, we have
y 2 C.'.k; x//

so we can pickzk 2 C.'.k; x// such thatjzk � yj < 1=k. Sincezk 2
C.'.k; x//, we can picksk � 0 such thatzk D '.sk ; '.k; x//. If we set
tk D kC sk , we see thattk � k, so the sequencet1; t2; : : : goes to infinity. Also,
since

j'.tk ; x/ � yj D j'.sk C k; x/ � yj D j'.sk ; '.k; x// � yj D jzk � yj
< 1=k;

we know that'.tk ; x/ ! y ask " 1. Hence,y 2 !.x/. Since this holds for
every

y 2
\

�2R

C.'.�; x//;

we know that \

�2R

C.'.�; x// � !.x/:

Combining this with (3.4) gives (3.1).

We now describe some properties of limit sets.

Theorem.Givenx 2 �, !.x/ and˛.x/ are closed (relative to�) and invariant.
If C.x/ is contained in some compact subset of�, then!.x/ is nonempty,
compact, and connected. If�.x/ is contained in some compact subset of�,
then˛.x/ is nonempty, compact, and connected.

Proof. Again, time-reversal arguments tell us that it is only necessary to prove
the statements about!.x/.

Step 1:!.x/ is closed.
This is a consequence of the lemma and the fact that the intersection of closed
sets is closed.
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Step 2:!.x/ is invariant.
Let y 2 !.x/ andt 2 R be given. Choose a sequence of times.tk/ converging
to infinity such that'.tk; x/ ! y ask " 1. For eachk 2 N, let sk D tk C t ,
and note that.sk/ converges to infinity and

'.sk ; x/ D '.tk C t; x/ D '.t; '.tk ; x// ! '.t; y/

ask " 1 (by the continuity of'.t; �/). Hence,'.t; y/ 2 !.x/. Sincet 2 R and
y 2 !.x/ were arbitrary, we know that!.x/ is invariant.

Now, suppose thatC.x/ is contained in a compact subsetK of �.

Step 3:!.x/ is nonempty.

The sequence'.1; x/; '.2; x/; : : : is contained inC.x/ � K, so by the Bolzano-
Weierstrass Theorem, some subseqence'.t1; x/; '.t2; x/; : : : converges to some
y 2 K. By definition,y 2 !.x/.

Step 4:!.x/ is compact.
By the Heine-Borel Theorem,K is closed (relative toRn), so, by the choice of
K, !.x/ � K. Since, by Step 1,!.x/ is closed relative to�, it is also closed
relative toK. SinceK is compact, this means!.x/ is closed (relative toRn).
Also, by the Heine-Borel Theorem,K is bounded so its subset!.x/ is bounded,
too. Thus,!.x/ is closed (relative toRn) and bounded and, therefore, compact.

Step 5:!.x/ is connected.
Suppose!.x/ were disconnected. Then there would be disjoint open subsets G

andH of� such thatG\!.x/ andH\!.x/ are nonempty, and!.x/ is contained
in G[H. Then there would have to be a sequences1; s2; : : : ! 1 and a sequence
t1; t2; : : : ! 1 such that'.sk ; x/ 2 G, '.tk ; x/ 2 H, andsk < tk < skC1 for
eachk 2 N. Because (for each fixedk 2 N)

˚

'.t; x/
ˇ
ˇ t 2 Œsk ; tk �

	

is a (connected) curve going from a point inG to a point inH, there must be a
time �k 2 .sk ; tk/ such that'.�k ; x/ 2 K n .G [ H/. Pick such a�k for each
k 2 N and note that�1; �2; : : : ! 1 and, by the Bolzano-Weierstrass Theorem,
some subsequence of.'.�k; x//must converge to a pointy in Kn .G [H/. Note
thaty, being outside ofG [ H, cannot be in!.x/, which is a contradiction.

Examples of empty!-limit sets are easy to find. Consider, for example, the
one-dimensional dynamical system'.t; x/ WD xCt (generated by the differential
equationPx D 1.
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Examples of dynamical systems with nonempty, noncompact, disconnected
!-limit sets are a little harder to find. Consider the planar autonomous system

(

Px D �y.1 � x2/
Py D x C y.1 � x2/:

After rescaling time, this differential equation generates a dynamical system on
R
2 with

!.x/ D
˚

.�1; y/
ˇ
ˇ y 2 R

	

[
˚

.1; y/
ˇ
ˇ y 2 R

	

for everyx in the punctured strip
˚

.x; y/ 2 R
2
ˇ
ˇ jxj < 1 andx2 C y2 > 0

	

:

3.2 Regular and Singular Points

Consider the differential equationPx D f .x/ and its associated dynamical system
'.t; x/ on a phase space�.

Definition. We say that a pointx 2 � is anequilibrium pointor asingular point
or acritical point if f .x/ D 0. For such a point,'.t; x/ D x for all t 2 R.

Definition. A point x 2 � that is not a singular point is called aregular point.

We shall show that all of the interesting local behavior of a continuous dy-
namical system takes place close to singular points. We shall do this by showing
that in the neighborhood of each regular point, the flow is very similar to unidi-
rectional, constant-velocity flow.

One way of making the notion of similarity of flows precise is the following.

Definition. Two dynamical systems' W R � � ! � and W R � ‚ ! ‚

aretopologically conjugateif there exists a homeomorphism (i.e., a continuous
bijection with continuous inverse)h W � ! ‚ such that

h.'.t; x// D  .t; h.x// (3.5)

for everyt 2 R and everyx 2 �. In other words, .t; �/ D h ı '.t; �/ ı h�1, or,
equivalently, the diagram

�
'.t;�/

����! �

h

?
?
y

?
?
yh

‚
 .t;�/

����! ‚
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commutes for eacht 2 R. The functionh is called atopological conjugacy. If,
in addition,h andh�1 arer-times continuously differentiable, we say that' and
 areC r -conjugate.

A weaker type of similarity is the following.

Definition. Two dynamical systems' W R � � ! � and W R � ‚ ! ‚

are topologically equivalentif there exists a homeomorphismh W � ! ‚ and
a time reparametrization function̨ W R � � ! R such that, for eachx 2 �,
˛.�; x/ W R ! R is an increasing surjection and

h.'.˛.t; x/; x// D  .t; h.x//

for every t 2 R and everyx 2 �. If, in addition, h is r-times continuously
differentiable, we say that' and areC r -equivalent.

A topological equivalence maps orbits to orbits and preserves the orientation
of time but may reparametrize time differently on each individual orbit.

As an example of the difference between these two concepts, consider the
two planar dynamical systems

'.t; x/ D
�

cost � sint
sint cost

�

x

and

 .t; y/ D
�

cos2t � sin2t
sin2t cos2t

�

y;

generated, respectively, by the differential equations

Px D
�

0 �1
1 0

�

x

and

Py D
�

0 �2
2 0

�

y:

The functionsh.x/ D x and˛.t; x/ D 2t show that these two flows are topolog-
ically equivalent. But these two flows are not topologicallyconjugate, since, by
settingt D � we see that any functionh W R

2 ! R
2 satisfying (3.5) would have

to satisfyh.x/ D h.�x/ for all x, which would mean thath is not invertible.
Because of examples like this, topological equivalence seems to be the pre-

ferred concept when dealing with flows. The following theorem, however, shows
that in a neighborhood of a regular point, a smooth flow satisfies a local version
of C r -conjugacy with respect to a unidirectional, constant-velocity flow.
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Theorem. (C r Rectification Theorem)Supposef W � ! R
n is r-times contin-

uously differentiable (withr � 1) andx0 is a regular point of the flow generated
by

Px D f .x/: (3.6)

Then there is a neighborhoodV of x0, a neighborhoodW of the origin inR
n,

and aC r mapg W V ! W withaC r inverse such that, for each solutionx of
(3.6) in V, y.t/ WD g.x.t// satisfies the equation

Py D

2

6
6
6
4

1

0
:::

0

3

7
7
7
5

(3.7)

in W.

Proof. Without loss of generality, we shall assume thatx0 D 0 andf .x0/ D
f .0/ D ˛e1 for some˛ > 0. Let W be a small ball centered at0 in R

n,
and defineG.y/ WD G..y1; : : : ; yn/

T / D '.y1; .0; y2; : : : ; yn/
T /, where' is

the flow generated by (3.6). (While' might not be a genuine dynamical system
because it might not be defined for all time, we know that it is at least defined long
enough thatG is well-defined ifW is sufficiently small.) In words,G.y/ is the
solution obtained by projectingy onto the plane through the origin perpendicular
to f .0/ and locating the solution of (3.6) that starts at this projected point after
y1 units of time have elapsed.

Step 1:'.�; p/ is C rC1.
We know that

d

dt
'.t; p/ D f .'.t; p//: (3.8)

If f is continuous then, since'.�; p/ is continuous, (3.8) implies that'.�; p/ is
C 1. If f is C 1, then the previous observation implies that'.�; p/ is C 1. Then
(3.8) implies thatd

dt
'.t; p/ is the composition ofC 1 functions and is, therefore,

C 1; this means that'.�; p/ is C 2. Continuing inductively, we see that, sincef
isC r , '.�; p/ isC rC1.

Step 2:'.t; �/ isC r .
This is a consequence of applying differentiability with respect to parameters in-
ductively.

Step 3:G isC r .
This is a consequence of Steps 1 and 2 and the formula forG in terms of'.
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Step 4:DG.0/ is an invertible matrix.
Since

@G.y/

@y1

ˇ
ˇ
ˇ
ˇ
yD0

D @

@t
'.t; 0/

ˇ
ˇ
ˇ
ˇ
tD0

D f .0/ D ˛e1

and
@G.y/

@yk

ˇ
ˇ
ˇ
ˇ
yD0

D @

@p
'.0; p/

ˇ
ˇ
ˇ
ˇ
pD0

� ek D @p

@p

ˇ
ˇ
ˇ
ˇ
pD0

ek D ek ;

for k ¤ 1, we have

DG.0/ D

2

4 ˛e1 e2 � � � en

3

5 ;

which is invertible sincę ¤ 0.

Step 5:If W is sufficiently small, thenG is invertible.
This is a consequence of Step 4 and the Inverse Function Theorem.

Setg equal to the (locally defined) inverse ofG. SinceG is C r , so isg.
The only thing remaining to check is that ifx satisfies (3.6) theng ı x satisfies
(3.7). Equivalently, we can check that ify satisfies (3.7) thenGıy satisfies (3.6).

Step 6:If y satisfies (3.7) thenG ı y satisfies (3.6).
By the chain rule,

d

dt
G.y.t// D @

@s
'.s; .0; y2; : : : ; yn//

ˇ
ˇ
ˇ
ˇ
sDy1

� Py1

C @

@p
'.y1; p/

ˇ
ˇ
ˇ
ˇ
pD.0;y2;:::;yn/

�

2

6
6
6
4

0

Py2
:::

Pyn

3

7
7
7
5

D f .'.y1; .0; y2; : : : ; yn/// D f .G.y//:

3.3 Definitions of Stability

In the previous section, we saw that all the “interesting” local behavior of flows
occurs near equilibrium points. One important aspect of thebehavior of flows
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has to do with whether solutions that start near a given solution stay near it for all
time and/or move closer to it as time elapses. This question,which is the subject
of stability theory, is not just of interest when the given solution correspondsto
an equilibrium solution, so we study it–initially, at least–in a fairly broad context.

Definitions

First, we define some types of stability for solutions of the (possibly) nonau-
tonomous equation

Px D f .t; x/: (3.9)

Definition. A solution x.t/ of (3.9) is (Lyapunov) stableif for each" > 0 and
t0 2 R there existsı D ı."; t0/ > 0 such that ifx.t/ is a solution of (3.9) and
jx.t0/ � x.t0/j < ı thenjx.t/ � x.t/j < " for all t � t0.

Definition. A solution x.t/ of (3.9) is asymptotically stableif it is (Lyapunov)
stable and if for everyt0 2 R there existsı D ı.t0/ > 0 such that ifx.t/ is a
solution of (3.9) andjx.t0/ � x.t0/j < ı thenjx.t/ � x.t/j ! 0 ast " 1.

Definition. A solution x.t/ of (3.9) isuniformly stableif for each" > 0 there
existsı D ı."/ > 0 such that ifx.t/ is a solution of (3.9) andjx.t0/�x.t0/j < ı
for somet0 2 R thenjx.t/ � x.t/j < " for all t � t0.

Some authors use a weaker definition of uniform stability that turns out to
be equivalent to Lyapunov stability for autonomous equations. Since our main
interest is in autonomous equations and this alternative definition is somewhat
more complicated than the definition given above, we will notuse it here.

Definition. A solution x.t/ of (3.9) is orbitally stable if for every " > 0 there
existsı D ı."/ > 0 such that ifx.t/ is a solution of (3.9) andjx.t1/�x.t0/j < ı
for somet0; t1 2 R then

[

t�t1

x.t/ �
[

t�t0

B.x.t/; "/:

Next, we present a couple of definitions of stability for subsets of the (open)
phase space� � R

n of a dynamical system'.t; x/. (In these definitions, a
neighborhoodof a setA � � is an open subset of� that containsA.)

Definition. The setA is stableif every neighborhood ofA contains a positively
invariant neighborhood ofA.
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Note that the definition implies that stable sets are positively invariant.

Definition. The setA is asymptotically stableif it is stable and there is some
neighborhoodV of A such that!.x/ � A for everyx 2 V. (If V can be chosen
to be the entire phase space, thenA is globally asymptotically stable.)

Examples

We now consider a few examples that clarify some properties of these definitions.

(

Px D �y=2
Py D 2x:

y

xb

1

Orbits are ellipses with major axis along they-axis. The equilibrium solution
at the origin is Lyapunov stable even though nearby orbits sometimes move away
from it.

(

Pr D 0

P� D r2;

or, equivalently,
(

Px D �.x2 C y2/y

Py D .x2 C y2/x:

y

xb

2

The solution moving around the unit circle is not Lyapunov stable, since
nearby solutions move with different angular velocities. It is, however, orbitally
stable. Also, the set consisting of the unit circle is stable.
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(

Pr D r.1� r/
P� D sin2.�=2/:

y

xb b

3

The constant solution.x; y/ D .1; 0/ is not Lyapunov stable and the set
f.1; 0/g is not stable. However, every solution beginning near.1; 0/ converges to
.1; 0/ ast " 1. This shows that it is not redundant to require Lyapunov stability
(or stability) in the definition of asymptotic stability of asolution (or a set).

Stability in Autonomous Equations

When we are dealing with a smooth autonomous differential equation

Px D f .x/ (3.10)

on an open set� � R
n, all of the varieties of stability can be applied to essen-

tially the same object. In particular, letx be a function that solves (3.10), and
let

A.x/ WD
˚

x.t/
ˇ
ˇ t 2 R

	

be the corresponding orbit. Then it makes sense to talk aboutthe Lyapunov,
asymptotic, orbital, or uniform stability ofx, and it makes sense to talk about the
stability or asymptotic stability ofA.x/.

In this context, certain relationships between the varioustypes of stability
follow from the definitions without too much difficulty.

Theorem.Letx be a function that solves(3.10), and letA.x/ be the correspond-
ing orbit. Then:

1. If x is asymptotically stable thenx is Lyapunov stable;

2. If x is uniformly stable thenx is Lyapunov stable;

3. If x is uniformly stable thenx is orbitally stable;

4. If A.x/ is asymptotically stable thenA.x/ is stable;
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5. If A.x/ contains only a single point, then Lyapunov stability ofx, orbital
stability ofx, uniform stability ofx, and stability ofA.x/ are equivalent.

We will not prove this theorem, but we will note that parts 1 and 2 are imme-
diate results of the definitions (even if we were dealing witha nonautonomous
equation) and part 4 is also an immediate result of the definitions (even ifA were
an arbitrary set).

Exercise 13In items 1–18, an autonomous differential equation, a phase
space� (that is an open subset ofR

n), and a particular solutionx of the
equation are specified. For each of these items, state which of the following
statements is/are true:

(a) x is Lyapunov stable;

(b) x is asymptotically stable;

(c) x is orbitally stable;

(d) x is uniformly stable;

(e) A.x/ is stable;

(f) A.x/ is asymptotically stable.

You do not need to justify your answers or show your work. It may
convenient to express your answers in a concise form (e.g., in a table of
some sort). Use of variablesr and� signifies that the equation (as well as
the particular solution) is to be interpreted as in polar form.

1. Px D x,� D R, x.t/ WD 0

2. Px D x,� D R, x.t/ WD et

3. f Px1 D 1C x22 ; Px2 D 0g,� D R
2, x.t/ WD .t; 0/

4. fPr D 0; P� D r2g,� D R
2, x.t/ WD .1; t/

5. Px D x,� D .0;1/, x.t/ WD et

6. f Px1 D 1; Px2 D �x1x2g,� D R
2, x.t/ WD .t; 0/

7. Px D tanhx,� D R, x.t/ WD sinh�1.et /
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8. f Px1 D tanhx1; Px2 D 0g,� D .0;1/ � R, x.t/ WD .sinh�1.et /; 0/

9. Px D tanhx,� D .0;1/, x.t/ WD sinh�1.et /

10. f Px1 D sechx1; Px2 D �x1x2 sechx1g,� D R
2,

x.t/ WD .sinh�1.t/; 0/

11. Px D x2=.1C x2/,� D R, x.t/ WD �2=.t C
p
t2 C 4/

12. f Px1 D sechx1; Px2 D �x2g,� D R
2, x.t/ WD .sinh�1.t/; 0/

13. Px D sechx,� D R, x.t/ WD sinh�1.t/

14. f Px1 D 1; Px2 D 0g,� D R
2, x.t/ WD .t; 0/

15. Px D 0,� D R, x.t/ WD 0

16. Px D 1,� D R, x.t/ WD t

17. f Px1 D �x1; Px2 D �x2g,� D R
2, x.t/ WD .e�t ; 0/

18. Px D �x,� D R, x.t/ WD 0

3.4 Principle of Linearized Stability

Supposef is a continuously differentiable function such that

Px D f .x/ (3.11)

generates a continuous dynamical system' on� � R
n. Suppose, moreover,

thatx0 2 � is a singular point of'. If x solves (3.11) and we setu WD x � x0
andA WD Df .x0/, we see that, by the definition of derivative,

Pu D f .uC x0/ D f .x0/CDf .x0/uCR.u/ D AuCR.u/; (3.12)

whereR.u/=juj ! 0 as juj # 0. BecauseR.u/ is small whenu is small, it is
reasonable to believe that solutions of (3.12) behave similarly to solutions of

Pu D Au (3.13)

for u near0. Equivalently, it is reasonable to believe that solutions of (3.11)
behave like solutions of

Px D A.x � x0/ (3.14)
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for x nearx0. Equation (3.13) (or sometimes (3.14)) is called thelinearization
of (3.11) atx0.

Now, we’ve defined (several types of) stability for equilibrium solutions of
(3.11) (as well as for other types of solutions and sets), butwe haven’t really
given any tools for determining stability. In this lecture we present one such tool,
using the linearized equation(s) discussed above.

Definition. An equilibrium pointx0 of (3.11) ishyperbolicif none of the eigen-
values ofDf .x0/ have zero real part.

If x0 is hyperbolic, then either all the eigenvalues ofA WD Df .x0/ have
negative real part or at least one has positive real part. In the former case, we
know that0 is an asymptotically stable equilibrium solution of (3.13); in the latter
case, we know that0 is an unstable solution of (3.13). The following theorem
says that similar things can be said about the nonlinear equation (3.11).

Theorem. (Principle of Linearized Stability) If x0 is a hyperbolic equilibrium
solution of (3.11), thenx0 is either unstable or asymptotically stable, and its sta-
bility type (with respect to(3.11)) matches the stability type of0 as an equilibrium
solution of (3.13)(whereA WD Df .x0/).

This theorem is an immediate consequence of the following two propositions.

Proposition. (Asymptotic Stability) If x0 is an equilibrium point of(3.11)and
all the eigenvalues ofA WD Df .x0/ have negative real part, thenx0 is asymptot-
ically stable.

Proposition. (Instability) If x0 is an equilibrium point of(3.11)and some eigen-
value ofA WD Df .x0/ has positive real part, thenx0 is unstable.

Before we prove these propositions, we state and prove a lemma to which we
have referred before in passing.

Lemma. Let V be a finite-dimensional real vector space and letL 2 L.V;V/.
If all the eigenvalues ofL have real part larger thanc, then there is an inner
producth�; �i and an induced normk � k onV such that

hv;Lvi � ckvk2

for everyv 2 V.
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Proof. Let n D dimV, and pick" > 0 so small that all the eigenvalues ofL have
real part greater thanc C n". Choose a basisfv1; : : : ; vng for V that putsL in
“modified” real canonical form with the off-diagonal 1’s replaced by"’s, and let
h�; �i be the inner product associated with this basis (i.e. hvi ; vj i D ıij ) and let
k � k be the induced norm onV.

Givenv D
Pn
iD1 ˛ivi 2 V, note that (ifL D .`ij /)

hv;Lvi D
n
X

iD1

`i i˛
2
i C

n
X

iD1

X

j¤i

`ij˛i j̨ �
n
X

iD1

`i i˛
2
i �

n
X

iD1

X

j¤i

"

 

˛2i C ˛2j

2

!

�
n
X

iD1

`i i˛
2
i �

n
X

iD1

n"˛2i D
n
X

iD1

.`i i � n"/˛2i �
n
X

iD1

c˛2i D ckvk2:

Note that applying this theorem to�L also tells us that, for some inner prod-
uct,

hv;Lvi � ckvk2 (3.15)

if all the eigenvalues ofL have real part less thanc.

Proof of Proposition on Asymptotic Stability.Without loss of generality, assume
thatx0 D 0. Pickc < 0 such that all the eigenvalues ofA have real part strictly
less thanc. Because of equivalence of norms and because of the lemma, wecan
work with a normk � k and a corresponding inner producth�; �i for which (3.15)
holds, withL D A. Let r > 0 be small enough thatkR.x/k � �c=2kxk for all
x satisfyingkxk � r , and let

Br WD
˚

x 2 �
ˇ
ˇ kxk < rg:

If x.t/ is a solution of (3.11) that starts inBr at timet D 0, then as long asx.t/
remains inBr

d

dt
kx.t/k2 D 2hx.t/; Px.t/i D 2hx.t/; f .x.t//i

D 2hx.t/; Ax.t/i C 2hx.t/;R.x.t//i
� 2ckx.t/k2 C 2kx.t/k � kR.x.t//k
� 2ckx.t/k2 � ckx.t/k2 D ckx.t/k2:

This means thatx.t/ 2 Br for all t � 0, andx.t/ converges to0 (exponentially
quickly) ast " 1.

The proof of the second proposition will be geometric and will contain ideas
that will be used to prove stronger results later in this text.
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Proof of Proposition on Instability.We assume again thatx0 D 0. If Eu,Es,
andEc are, respectively, the unstable, stable, and center spacescorresponding to
(3.13), setE� WD Es ˚ Ec andEC WD Eu. ThenR

n D EC ˚ E�, all of the
eigenvalues ofAC WD AjEC have positive real part, and all of the eigenvalues
of A� WD AjE� have nonpositive real part. Pick constantsa > b > 0 such that
all of the eigenvalues ofAC have real part larger thana, and note that all of the
eigenvalues ofA� have real part less thanb. Define an inner producth�; �iC (and
induced normk � kC) onEC such that

hv;AviC � akvk2C

for all v 2 EC, and define an inner producth�; �i� (and induced normk � k�) on
E� such that

hw;Awi� � bkwk2�

for all w 2 E�. Defineh�; �i onEC ˚E� to be thedirect sumof h�; �iC andh�; �i�;
i.e., let

hv1 Cw1; v2 Cw2i WD hv1; v2iC C hw1; w2i�

for all .v1; w1/; .v2; w2/ 2 EC �E�. Let k � k be the induced norm, and note that

kv Cwk2 D kvk2C C kwk2� D kvk2 C kwk2

for all .v;w/ 2 EC � E�.
Now, take (3.11) and project it ontoEC andE� to get the corresponding

system for.v;w/ 2 EC � E�

(

Pv D ACv CRC.v;w/

Pw D A�w CR�.v;w/;
(3.16)

with kR˙.v;w/k=kv C wk converging to 0 askv C wk # 0. Pick " > 0 small
enough thata�b�2

p
2" > 0, and pickr > 0 small enough thatkR˙.v;w/k �

"kv Cwk whenever

v Cw 2 Br WD
˚

v C w 2 EC ˚ E�
ˇ
ˇ kv Cwk < r

	

:

Consider the truncated cone

Kr WD
˚

v Cw 2 EC ˚ E�
ˇ
ˇ kvk > kwk

	

\ Br :

(See Figure 1.) Supposex D v C w is a solution of (3.16) that starts inKr at
80



Principle of Linearized Stability

w

vbb

Br

Kr

Figure 3.1: The truncated cone.

time t D 0. For as long as the solution remains inKr ,

d

dt
kvk2 D 2hv; Pvi D 2hv;ACvi C 2hv;RC.v;w/i

� 2akvk2 � 2kvk � kRC.v;w/k � 2akvk2 � 2"kvk � kv Cwk

D 2akvk2 � 2"kvk
�

kvk2 C kwk2
�1=2 � 2akvk2 � 2

p
2"kvk2

D 2.a �
p
2"/kvk2;

and

d

dt
kwk2 D 2hw; Pwi D 2hw;A�wi C 2hw;R�.v;w/i

� 2bkwk2 C 2kwk � kR�.v;w/k
� 2bkwk2 C 2"kwk � kv Cwk

D 2bkwk2 C 2"kwk
�

kvk2 C kwk2
�1=2

� 2bkvk2 C 2
p
2"kvk2

D 2.b C
p
2"/kvk2:

The first estimate says that as long as the solution stays inKr , kvk grows expo-
nentially, which means that the solution must eventually leaveKr . Combining
the first and second estimates, we have

d

dt
.kvk2 � kwk2/ � 2.a � b � 2

p
2"/kvk2 > 0;
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so g.v C w/ WD kvk2 � kwk2 increases ast increases. Butg is 0 on the lat-
eral surface ofKr and is strictly positive inKr , so the solution cannot leaveKr
through its lateral surface. Thus, the solution leavesKr by leavingBr . Since
this holds for all solutions starting inKr , we know thatx0 must be an unstable
equilibrium point for (3.11).

3.5 Lyapunov’s Direct Method

Another tool for determining stability of solutions isLyapunov’s direct method.
While this method may actually seem rather indirect, it doeswork directly on the
equation in question instead of on its linearization.

We will consider this method for equilibrium solutions of (possibly) nonau-
tonomous equations. Let� � R

n be open and contain the origin, and suppose
thatf W R � � ! R

n is a continuously differentiable function. Suppose, fur-
thermore, thatf .t; 0/ D 0 for every t 2 R, sox.t/ WD 0 is a solution of the
equation

Px D f .t; x/: (3.17)

(The results we obtain in this narrow context can be applied to determine the
stability of other constant solutions of (3.17) by translation.)

In this section, a subset of� that contains the origin in its interior will be
called aneighborhoodof 0.

Definition. Suppose thatD is a neighborhood of0 and thatW W D ! R is
continuous and satisfiesW.0/ D 0. Then:

� If W.x/ � 0 for everyx 2 D, thenW is positive semidefinite.

� If W.x/ > 0 for everyx 2 D n f0g, thenW is positive definite.

� If W.x/ � 0 for everyx 2 D, thenW is negative semidefinite.

� If W.x/ < 0 for everyx 2 D n f0g, thenW is negative definite.

Definition. Suppose thatD is a neighborhood of0 and thatV W R � D ! R is
continuous and satisfiesV.t; 0/ D 0 for everyt 2 R. Then:

� If there is a positive semidefinite functionW W D ! R such thatV.t; x/ �
W.x/ for every.t; x/ 2 R � D, thenV is positive semidefinite.

� If there is a positive definite functionW W D ! R such thatV.t; x/ �
W.x/ for every.t; x/ 2 R � D, thenV is positive definite.
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� If there is a negative semidefinite functionW W D ! R such thatV.t; x/ �
W.x/ for every.t; x/ 2 R � D, thenV is negative semidefinite.

� If there is a negative definite functionW W D ! R such thatV.t; x/ �
W.x/ for every.t; x/ 2 R � D, thenV is negative definite.

Definition. If V W R � D is continuously differentiable then itsorbital derivative
(with respect to (3.17)) is the functionPV W R � D ! R given by the formula

PV .t; x/ WD @V

@t
.t; x/C @V

@x
.t; x/ � f .t; x/:

(Here “@V.t; x/=@x” represents the gradient of the functionV.t; �/.)

Note that ifx.t/ is a solution of (3.17) then, by the chain rule,

d

dt
V .t; x.t// D PV .t; x.t//:

A function whose orbital derivative is always nonpositive is sometimes called a
Lyapunov function.

Theorem. (Lyapunov Stability) If there is a neighborhoodD of 0 and a con-
tinuously differentiable positive definite functionV W R � D ! R whose orbital
derivative PV is negative semidefinite, then0 is a Lyapunov stable solution of
(3.17).

Proof. Let " > 0 andt0 2 R be given. Assume, without loss of generality, that
B.0; "/ is contained inD. Pick a positive definite functionW W D ! R such that
V.t; x/ � W.x/ for every.t; x/ 2 R � D. Let

m WD min
˚

W.x/
ˇ
ˇ jxj D "

	

:

SinceW is continuous and positive definite,m is well-defined and positive. Pick
ı > 0 small enough thatı < " and

max
˚

V.t0; x/
ˇ
ˇ jxj � ı

	

< m:

(SinceV is positive definite and continuous, this is possible.)
Now, if x.t/ solves (3.17) andjx.t0/j < ı thenV.t0; x.t0// < m, and

d

dt
V .t; x.t// D PV .t; x.t// � 0;

for all t , soV.t; x.t// < m for every t � t0. Thus,W.x.t// < m for every
t � t0, so, for everyt � t0, jx.t/j ¤ ". Sincejx.t0/j < ", this tells us that
jx.t/j < " for everyt � t0.
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Theorem. (Asymptotic Stability) Suppose that there is a neighborhoodD of
0 and a continuously differentiable positive definite function V W R � D !
R whose orbital derivativePV is negative definite, and suppose that there is a
positive definite functionW W D ! R such thatV.t; x/ � W .x/ for every
.t; x/ 2 R � D. Then0 is an asymptotically stable solution of(3.17).

Proof. By the previous theorem,0 is a Lyapunov stable solution of (3.17). Let
t0 2 R be given. Assume, without loss of generality, thatD is compact. By
Lyapunov stability, we know that we can choose a neighborhood U of 0 such that
if x.t/ is a solution of (3.17) andx.t0/ 2 U , thenx.t/ 2 D for everyt � t0. We
claim that, in fact, ifx.t/ is a solution of (3.17) andx.t0/ 2 U , thenx.t/ ! 0 as
t " 1. Verifying this claim will prove the theorem.

Suppose thatV.t; x.t// does not converge to0 as t " 1. The negative
definiteness ofPV implies thatV.�; x.�// is nonincreasing, so, sinceV � 0, there
must be a numberc > 0 such thatV.t; x.t// � c for every t � t0. Then
W .x.t// � c > 0 for everyt � t0. SinceW .0/ D 0 andW is continuous,

inf
˚

jx.t/j
ˇ
ˇ t � t0

	

� " (3.18)

for some constant" > 0. Pick a negative definite functionY W D ! R such that
PV .t; x/ � Y.x/ for every.t; x/ 2 R �D. The compactness ofD nB.0; "/, along

with (3.18), implies that
˚

Y.x.t//
ˇ
ˇ t � t0

	

is bounded away from 0. This, in turn, implies that
˚ PV .t; x.t//

ˇ
ˇ t � t0

	

is bounded away from 0. In other words,

d

dt
V .t; x.t// D PV .t; x.t// � �ı (3.19)

for some constantı > 0. Clearly, (3.19) contradicts the nonnegativity ofV for
larget .

That contradiction implies thatV.t; x.t// ! 0 ast " 1. Pick a positive def-
inite functionW W D ! R such thatV.t; x/ � W .x/ for every.t; x/ 2 R � D,
and note thatW .x.t// ! 0 ast " 1.

Let r > 0 be given, and let

wr D min
˚

W .p/
ˇ
ˇ p 2 D n B.0; r/

	

;

which is defined and positive by the compactness ofD and the continuity and
positive definiteness ofW . SinceW .x.t// ! 0 ast " 1, there existsT such
thatW .x.t// < wr for every t > T . Thus, fort > T , it must be the case that
x.t/ 2 B.0; r/. Hence,0 is asymptotically stable.
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It may seem strange that we ned to boundV by a time-independent, positive
definite functionW from above. Indeed, some textbooks (see,e.g., Theorem 2.20
in Stability, Instability, and Chaosby Glendinning) contain asymptotic stability
theorems omitting this hypothesis. There is a counterexample by Massera that
demonstrates the necessity of the hypothesis.

Exercise 14Show, by means of a counterexample, that the theorem on
asymptotic stability via Lyapunov’s direct method fails ifthe hypothesis
aboutW is dropped.

(You may, but do not have to, proceed as follows. Letg W R ! R be a
function that is twice continuously differentiable and satisfiesg.t/ � e�t

for everyt 2 R, g.t/ � 1 for everyt � 0, g.t/ D e�t for every

t …
[

n2N

.n � 2�n; nC 2�n/;

andg.n/ D 1 for everyn 2 N. Letf W R � R ! R be the function defined
by the formula

f .t; x/ WD g0.t/

g.t/
x;

and letV W R � R ! R be the function defined by the formula

V.t; x/ WD x2

Œg.t/�2

�

3�
Z t

0

Œg.�/�2 d�

�

:

Show that, forx near0, V.t; x/ is positive definite andPV .t; x/ is negative
definite, but the solution 0 of (3.17) is not asymptotically stable.)

3.6 LaSalle’s Invariance Principle

Linearization versus Lyapunov Functions

In the previous two lectures, we have talked about two different tools that can be
used to prove that an equilibrium pointx0 of an autonomous system

Px D f .x/ (3.20)

is asymptotically stable: linearization and Lyapunov’s direct method. One might
ask which of these methods is better. Certainly, linearization seems easier to
apply because of its straightforward nature: Compute the eigenvalues ofDf .x0/.
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The direct method requires you to find an appropriate Lyapunov function, which
doesn’t seem so straightforward. But, in fact, anytime linearization works, a
simple Lyapunov function works, as well.

To be more precise, supposex0 D 0 and all the eigenvalues ofA WD Df .0/

have negative real part. Pick an inner producth�; �i and induced normk � k such
that, for somec > 0,

hx;Axi � �ckxk2

for all x 2 R
n. Pickr > 0 small enough thatkf .x/�Axk � .c=2/kxk whenever

kxk � r , let
D D

˚

x 2 R
n
ˇ
ˇ kxk � r

	

;

and defineV W R �D ! R by the formulaV.t; x/ D kxk2. Sincek � k is a norm,
V is positive definite. Also

PV .t; x/ D 2hx; f .x/i D 2.hx;Axi C hx; f .x/� Axi/
� 2.�ckxk2 C kxkkf .x/� Axk/ � �ckxk2;

so PV is negative definite.
On the other hand, there are very simple examples to illustrate that the direct

method works in some cases where linearization doesn’t. Forexample, consider
Px D �x3 on R. The equilibrium point at the origin is not hyperbolic, so lin-
earization fails to determine stability, but it is easy to check thatx2 is positive
definite and has a negative definite orbital derivative, thusensuring the asymp-
totic stability of 0.

A More Complicated Example

The previous example is so simple that it might make one question whether the
direct method is of any use on problems where stability cannot be determined by
linearizationor by inspection. Thus, let’s consider something more complicated.
Consider the planar system

(

Px D �y � x3

Py D x5:

The origin is a nonhyperbolic equilibrium point, with 0 being the only eigenvalue,
so the principle of linearized stability is of no use. A sketch of the phase portrait
indicates that orbits circle the origin in the counterclockwise direction, but it is
not obvious whether they spiral in, spiral out, or move on closed curves.

The simplest potential Lyapunov function that often turns out to be useful is
the square of the standard Euclidean norm, which in this caseis V WD x2 C y2.
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The orbital derivative is

PV D 2x Px C 2y Py D 2x5y � 2xy � 2x4: (3.21)

For some points.x; y/ near the origin (e.g., .ı; ı/) PV < 0, while for other points
near the origin (e.g., .ı;�ı/) PV > 0, so this function doesn’t seem to be of much
use.

Sometimes when the square of the standard Euclidean norm doesn’t work,
some other homogeneous quadratic function does. Suppose wetry the function
V WD x2 C ˛xy C ˇy2, with ˛ andˇ to be determined. Then

PV D .2x C ˛y/ Px C .˛x C 2ˇy/ Py
D �.2x C ˛y/.y C x3/C .˛x C 2ˇy/x5

D �2x4 C ˛x6 � 2xy � ˛x3y C 2ˇx5y � ˛y2:

Setting.x; y/ D .ı;�ı2/ for ı positive and small, we see thatPV is not going to
be negative semidefinite, no matter what we pick˛ andˇ to be.

If these quadratic functions don’t work, maybe something customized for the
particular equation might. Note that the right-hand side ofthe first equation in
(3.21) sort of suggests thatx3 andy should be treated as quantities of the same
order of magnitude. Let’s tryV WD x6 C ˛y2, for somę > 0 to be determined.
Clearly,V is positive definite, and

PV D 6x5 Px C 2˛y Py D .2˛ � 6/x5y � 6x8:

If ˛ ¤ 3, then PV is of opposite signs for.x; y/ D .ı; ı/ and for.x; y/ D .ı;�ı/
whenı is small. Hence, we should set˛ D 3, yielding PV D �6x8 � 0. Thus
V is positive definite andPV is negative semidefinite, implying that the origin is
Lyapunov stable.

Is the origin asymptotically stable? Perhaps we can make a minor modifica-
tion to the preceding formula forV so as to makePV strictly negative in a deleted
neighborhood of the origin without destroying the positivedefiniteness ofV . If
we added a small quantity whose orbital derivative was strictly negative when
x D 0 andjyj is small and positive, this might work. Experimentation suggests
that a positive multiple ofxy3 might work, since this quantity changes from pos-
itive to negative as we cross they-axis in the counterclockwise direction. Also,
it is at least of higher order than3y2 near the origin, so it has the potential of
preserving the positive definiteness ofV .

In fact, we claim thatV WD x6Cxy3C3y2 is positive definite with negative
definite orbital derivative near0. A handy inequality, sometimes called Young’s
inequality, that can be used in verifying this claim (and in other circumstances,
as well) is given in the following lemma.
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Lemma. (Young’s Inequality) If a; b � 0, then

ab � ap

p
C bq

q
; (3.22)

for every pair of numbersp; q 2 .1;1/ satisfying

1

p
C 1

q
D 1: (3.23)

Proof. Assume that (3.23) holds. Clearly (3.22) holds ifb D 0, so assume that
b > 0, and fix it. Defineg W Œ0;1/ by the formula

g.x/ WD xp

p
C bq

q
� xb:

Note thatg is continuous, andg0.x/ D xp�1 � b for everyx 2 .0;1/. Since
limx#0 g

0.x/ D �b < 0, limx"1 g0.x/ D 1, andg0 is increasing on.0;1/,
we know thatg has a unique minimizer atx0 D b1=.p�1/. Thus, for every
x 2 Œ0;1/ we see, using (3.23), that

g.x/ � g.b1=.p�1// D bp=.p�1/

p
C bq

q
� bp=.p�1/ D

�
1

p
C 1

q
� 1

�

bq D 0:

In particular,g.a/ � 0, so (3.22) holds.

Now, letV D x6 C xy3 C 3y2. Applying Young’s inequality witha D jxj,
b D jyj3, p D 6, andq D 6=5, we see that

jxy3j D jxjjyj3 � jxj6
6

C 5jyj18=5
6

� 1

6
x6 C 5

6
y2

if jyj � 1, so

V � 5

6
x6 C 13

6
y2

if jyj � 1. Also,

PV D �6x8 C y3 Px C 3xy2 Py D �6x8 � y3.y C x3/C 3x6y2

D �6x8 � x3y3 C 3x6y2 � y4:

Applying Young’s inequality to the two mixed terms in this orbital derivative, we
have

j � x3y3j D jxj3jyj3 � 3jxj8
8

C 5jyj24=5
8

� 3

8
x8 C 5

8
y4
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if jyj � 1, and

j3x6y2j D 3jxj6jyj2 � 3

�
3jxj8
4

C jyj8
4

�

D 9

4
x8 C 3

4
y8 � 9

4
x8 C 3

64
y4

if jyj � 1=2. Thus,

PV � �27
8
x8 � 21

64
y4

if jyj � 1=2, so, in a neighborhood of0, V is positive definite andPV is negative
definite, which implies that0 is asymptotically stable.

LaSalle’s Invariance Principle

We would have saved ourselves a lot of work on the previous example if we could
have just stuck with the moderately simple functionV D x6C 3y2, even though
its orbital derivative was only negative semidefinite. Notice that the set of points
where PV was 0 was small (they-axis) and at most of those points the vector field
was not parallel to the set. LaSalle’s Invariance Principle, which we shall state
and prove for the autonomous system

Px D f .x/; (3.24)

allows us to use such aV to prove asymptotic stability.

Theorem. (LaSalle’s Invariance Principle)Suppose there is a neighborhoodD
of 0 and a continuously differentiable (time-independent) positive definite func-
tion V W D ! R whose orbital derivativePV (with respect to(3.24)) is negative
semidefinite. LetI be the union of all complete orbits contained in

˚

x 2 D
ˇ
ˇ PV .x/ D 0

	

:

Then there is a neighborhoodU of 0 such that for everyx0 2 U , !.x0/ � I.

Before proving this, we note that when applying it toV D x6 C 3y2 in the
previous example, the setI is a singleton containing the origin and, sinceD can
be assumed to be compact, each solution beginning inU actually converges to0
ast " 1.

Proof of LaSalle’s Invariance Principle.Let ' be the flow generated by (3.24).
By a previous theorem,0 must be Lyapunov stable, so we can pick a neighbor-
hoodU of 0 such that'.t; x/ 2 D for everyx0 2 U and everyt � 0.

Let x0 2 U andy 2 !.x0/ be given. By the negative semidefiniteness of
PV , we know thatV.'.t; x0// is a nonincreasing function oft . By the positive
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definiteness ofV , we know thatV.'.t; x0// remains nonnegative, so it must
approach some constantc � 0 as t " 1. By continuity ofV , V.z/ D c for
everyz 2 !.x0/. Since!.x0/ is invariant,V.'.t; y// D c for everyt 2 R. The
definition of orbital derivative then implies thatPV .'.t; y// D 0 for everyt 2 R.
Hence,y 2 I.

Exercise 15Show that.x.t/; y.t// D .0; 0/ is an asymptotically stable
solution of (

Px D �x3 C 2y3

Py D �2xy2:
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4

Conjugacies

4.1 Hartman-Grobman Theorem: Part 1

The Principle of Linearized Stability indicates one way in which the flow near
a singular point of an autonomous ODE resembles the flow of itslinearization.
The Hartman-Grobman Theorem gives further insight into theextent of the re-
semblance; namely, there is a local topological conjugacy between the two. We
will spend the next 5 sections talking about the various forms of this theorem and
their proofs. This amount of attention is justified not only by the significance of
the theorem but the general applicability of the techniquesused to prove it.

Let � � R
n be open and letf W � ! R

n be continuously differentiable.
Suppose thatx0 2 � is a hyperbolic equilibrium point of the autonomous equa-
tion

Px D f .x/: (4.1)

LetB D Df .x0/, and let' be the (local) flow generated by (4.1). The version of
the Hartman-Grobman Theorem we’re primarily interested inis the following.

Theorem. (Local Hartman-Grobman Theorem for Flows)Let�, f , x0, B,
and' be as described above. Then there are neighborhoodsU andV of x0 and
a homeomorphismh W U ! V such that

'.t; h.x// D h.x0 C etB.x � x0//

wheneverx 2 U andx0 C etB.x � x0/ 2 U .

It will be easier to derive this theorem as a consequence of a global theorem
for maps than to prove it directly. In order to state that version of the theorem,
we will need to introduce a couple of function spaces and a definition.

Let
C 0b .R

n/ D
˚

w 2 C.Rn;Rn/
ˇ
ˇ sup
x2Rn

jw.x/j < 1
	

:
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When equipped with the norm

kwk0 WD sup
x2Rn

kw.x/k;

wherek � k is some norm onRn, C 0
b
.Rn/ is a Banach space. (We shall pick a

particular normk � k later.)
Let

C 1b .R
n/ D

˚

w 2 C 1.Rn;Rn/ \ C 0b .R
n/
ˇ
ˇ sup
x2Rn

kDw.x/k < 1
	

;

wherek � k is the operator norm corresponding to some norm onR
n. Note that

the functional

Lip.w/ WD sup
x1;x22R

n

x1¤x2

kw.x1/ � w.x2/k
kx1 � x2k

is defined onC 1
b
.Rn/. We will not define a norm onC 1

b
.Rn/, but will often use

Lip, which is not a norm, to describe the size of elements ofC 1
b
.Rn/.

Definition. If A 2 L.Rn;Rn/ and none of the eigenvalues ofA lie on the unit
circle, thenA is hyperbolic.

Note that ifx0 is a hyperbolic equilibrium point of (4.1) andA D eDf.x0/,
thenA is hyperbolic.

Theorem. (Global Hartman-Grobman Theorem for Maps) Suppose that the
mapA 2 L.Rn;Rn/ is hyperbolic and invertible. Then there exists a number
" > 0 such that for everyg 2 C 1

b
.Rn/ satisfyingLip.g/ < " there exists a

unique functionv 2 C 0
b
.Rn/ such that

F.h.x// D h.Ax/

for everyx 2 R
n, whereF D ACg andh D ICv. Furthermore,h W R

n ! R
n

is a homeomorphism.

4.2 Hartman-Grobman Theorem: Part 2

Subspaces and Norms

We start off with a lemma that is analogous to the lemma in Lecture 21, except
this one will deal with the magnitude, rather than the real part, of eigenvalues.
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Lemma. LetV be a finite-dimensional real vector space and letL 2 L.V;V/. If
all the eigenvalues ofL have magnitude less thanc, then there is a normk � k on
V such that

kLvk � ckvk
for everyv 2 V.

Proof. As in the previous lemma, the norm will be the Euclidean norm corre-
sponding to the modification of the real canonical basis thatgives a matrix rep-
resentation ofL that has"’s in place of the off-diagonal1’s. With respect to this
basis, it can be checked that

LTL D D CR."/;

whereD is a diagonal matrix, each of whose diagonal entries is less thanc2, and
R."/ is a matrix whose entries converge to0 as" # 0. Hence, as in the proof of
the earlier lemma, we can conclude that if" is sufficiently small then

kLvk2 D hv;LTLvi � c2kvk2

for everyv 2 V (whereh�; �i is the inner product that inducesk � k).

Note that ifL is a linear operator, all of whose eigenvalues have magnitude
greaterthanc, then we get the reverse inequality

kLvk � ckvk

for some normk � k. This follows trivially in the case whenc � 0, and when
c > 0 it follows by applying the lemma toL�1 (which exists, since0 is not an
eigenvalue ofL).

Now, suppose thatA 2 L.Rn;Rn/ is hyperbolic. Then, sinceA has only
finitely many eigenvalues, there is a numbera 2 .0; 1/ such that none of the
eigenvalues ofA are in the closed annulus

B.0; a�1/ n B.0; a/:

Using the notation developed when we were deriving the real canonical form, let

E� D

8

<

:

M

�2.�a;a/

N.A� �I /

9

=

;
˚

8

ˆ
<̂

ˆ̂
:

M

j�j<a
Im�¤0

˚

Reu
ˇ
ˇ u 2 N.A � �I /

	

9

>
>=

>>;

˚

8

ˆ
<̂

ˆ̂
:

M

j�j<a
Im�¤0

˚

Imu
ˇ
ˇ u 2 N.A� �I /

	

9

>
>=

>>;

;
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and let

EC D

8

<

:

M

�2.�1;�a�1/[.a�1;1/

N.A � �I /

9

=

;
˚

8

ˆ̂

<̂

ˆ̂

:̂

M

j�j>a�1

Im�¤0

˚

Reu
ˇ
ˇ u 2 N.A � �I /

	

9

>>
>=

>>>;

˚

8

ˆ̂

<̂

ˆ̂

:̂

M

j�j>a�1

Im�¤0

˚

Imu
ˇ
ˇ u 2 N.A � �I /

	

9

>>
>=

>>>;

:

Then R
n D E� ˚ EC, andE� and EC are both invariant underA. Define

P� 2 L.Rn; E�/ andPC 2 L.Rn; EC/ to be the linear operators that map
eachx 2 R

n to the unique elementsP�x 2 E� andPCx 2 EC such that
P�x C PCx D x.

Let A� 2 L.E�; E�/ andAC 2 L.EC; EC/ be the restrictions ofA to E�

andEC, respectively. By the lemma and the discussion immediatelythereafter,
we can find a normk � k� for E� and a normk � kC for EC such that

kA�xk� � akxk�

for everyx 2 E�, and
kACxkC � a�1kxkC

for everyx 2 EC. Define a normk � k on R
n by the formula

kxk D maxfkP�xk�; kPCxkCg: (4.2)

This is the norm onRn that we will use throughout our proof of the (global)
Hartman-Grobman Theorem (for maps). Note thatkxk D kxk� if x 2 E�, and
kxk D kxkC if x 2 EC.

Recall that we equippedC 0
b
.Rn/ with the normk � k0 defined by the formula

kwk0 WD sup
x2Rn

kw.x/k:

The norm onR
n on the right-hand side of this formula is that given in (4.2).

Recall also that we will use the functional Lip defined by the formula

Lip.w/ WD sup
x1;x22R

n

x1¤x2

kw.x1/ � w.x2/k
kx1 � x2k

The norm onRn on the right-hand side of this formula is also that given in (4.2).
Let

C 0b .E
�/ D

˚

w 2 C.Rn; E�/
ˇ
ˇ sup
x2Rn

kw.x/k� < 1
	

;
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and let
C 0b .E

C/ D
˚

w 2 C.Rn; EC/
ˇ
ˇ sup
x2Rn

kw.x/kC < 1
	

:

SinceR
n D E� ˚ EC, it follows that

C 0b .R
n/ D C 0b .E

�/˚ C 0b .E
C/;

and the corresponding decomposition of an elementw 2 C 0
b
.Rn/ is

w D P� ı w C PC ıw:

We equipC 0
b
.E�/ andC 0

b
.EC/ with the same normk � k0 that we used on

C 0
b
.Rn/, thereby making each of these two spaces a Banach space. It isnot hard

to see that
kwk0 D maxfkP� ıwk0; kPC ı wk0g:

4.3 Hartman-Grobman Theorem: Part 3

Linear and Nonlinear Maps

Now, assume thatA is invertible, so that

inf
x¤0

kAxk
kxk > 0:

Choose, and fix, a positive constant

" < min

�

1 � a; inf
x¤0

kAxk
kxk

�

:

Choose, and fix, a functiong 2 C
1
b
.Rn/ for which Lip.g/ < ". The (global)

Hartman-Grobman Theorem (for maps) will be proved by constructing a map‚
from C 0

b
.Rn/ to C 0

b
.Rn/ whose fixed points would be precisely those objectsv

which, when added to the identityI , would yield solutionsh to the conjugacy
equation

.AC g/ ı h D h ı A; (4.3)

and then showing that‚ is a contraction (and thath is a homeomorphism).
Pluggingh D I C v into (4.3) and manipulating the result, we can see that

that equation is equivalent to the equation

Lv D ‰.v/; (4.4)
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where‰.v/ WD g ı .I C v/ ı A�1 and

Lv D v � A ı v ı A�1 DW .id �A/v:

Since the composition of continuous functions is continuous, and the composi-
tion of functions is bounded if the outer function in the composition is bounded,
it is clear that‰ is a (nonlinear) map fromC 0

b
.Rn/ toC 0

b
.Rn/. Similarly,A and,

therefore,L are linear maps fromC 0
b
.Rn/ to C 0

b
.Rn/. We will show thatL can

be inverted and then applyL�1 to both sides of (4.4) to get

v D L�1.‰.v// DW ‚.v/ (4.5)

as our fixed point equation.

Inverting L

SinceA behaves significantly differently onE� than it does onEC, A and, there-
fore, L behave significantly differently onC 0

b
.E�/ than they do onC 0

b
.EC/.

For this reason, we will analyzeL by looking at its restrictions toC 0
b
.E�/ and

to C 0
b
.EC/. Note thatC 0

b
.E�/ andC 0

b
.EC/ are invariant underA and, there-

fore, underL. Therefore, it makes sense to letA� 2 L.C 0
b
.E�/; C 0

b
.E�// and

AC 2 L.C 0
b
.EC/; C 0

b
.EC// be the restrictions ofA toC 0

b
.E�/ andC 0

b
.EC/, re-

spectively, and letL� 2 L.C 0
b
.EC/; C 0

b
.EC// andLC 2 L.C 0

b
.EC/; C 0

b
.EC//

be the corresponding restrictions ofL. ThenL will be invertible if and only ifL�

andLC are each invertible. To invertL� andLC we use the following general
result about the invertibility of operators on Banach spaces.

Lemma. LetX be a Banach space with normk � kX and corresponding operator
normk�kL.X ;X /. LetG be a linear map fromX toX , and letc < 1 be a constant.
Then:

(a) If kGkL.X ;X / � c, thenid �G is invertible and

k.id �G/�1kL.X ;X / � 1

1 � c :

(b) If G is invertible andkG�1kL.X ;X / � c, thenid �G is invertible and

k.id �G/�1kL.X ;X / � c

1 � c :

Proof. The space of bounded linear maps fromX to X is a Banach space using
the operator norm. In case(a), the bound onkGkL.X ;X /, along with the Cauchy
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convergence criterion, implies that the series
1
X

kD0

Gk

converges to a bounded linear map fromX to X ; call it H . In fact, we see that
(by the formula for the sum of a geometric series)

kHkL.X ;X / � 1

1� c :

It is not hard to check thatH ı.id �G/ D .id �G/ıH D id, soH D .id �G/�1.
In case(b), we can apply the results of(a) with G�1 in place ofG to deduce

that id�G�1 is invertible and that

k.id �G�1/�1kL.X ;X / � 1

1 � c :

Since id�G D �G.id �G�1/ D �.id �G�1/G, it is not hard to check that
�.id �G�1/�1G�1 is the inverse of id�G and that

k � .id �G�1/�1G�1kL.X ;X / � c

1� c :

The first half of this lemma is useful for inverting small perturbations of the
identity, while the second half is useful for inverting large perturbations of the
identity. It should, therefore, not be too surprising that we will apply the first half
with G D A� and the second half withG D AC (sinceA compresses things in
theE� direction and stretches things in theEC direction).

First, considerA�. If w 2 C 0
b
.E�/, then

kA�wk0 D kA ı w ı A�1k0 D sup
x2Rn

kAw.A�1x/k D sup
y2Rn

kAw.y/k

� a sup
y2Rn

kw.y/k D akwk0;

so the operator norm ofA� is bounded bya. Applying the first half of the lemma
with X D C 0

b
.E�/, G D A�, andc D a, we find thatL� is invertible, and its

inverse has operator norm bounded by.1� a/�1.
Next, considerAC. It is not too hard to see thatAC is invertible, and

.AC/�1w D A�1 ı w ı A. If w 2 C 0
b
.EC/, then (since the eigenvalues of

the restriction ofA�1 to EC all have magnitude less thana)

k.AC/�1wk0 D kA�1 ı w ı Ak0 D sup
x2Rn

kA�1w.Ax/k

D sup
y2Rn

kA�1w.y/k � a sup
y2Rn

kw.y/k D akwk0;
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so the operator norm of.AC/�1 is bounded bya. Applying the second half of the
lemma withX D C 0

b
.EC/, G D AC, andc D a, we find thatLC is invertible,

and its inverse has operator norm bounded bya.1� a/�1.
Putting these two facts together, we see thatL is invertible, and, in fact,

L�1 D .L�/�1 ı P� C .LC/�1 ı PC:

If w 2 C 0
b
.Rn/, then

kL�1wk0 D sup
x2Rn

kL�1w.x/k

D sup
x2Rn

maxfkP�L�1w.x/k; kPCL�1w.x/kg

D sup
x2Rn

maxfk.L�/�1P�w.x/k; k.LC/�1PCw.x/kg

� sup
x2Rn

max

�
1

1 � akw.x/k; a

1 � akw.x/k
�

D 1

1 � a sup
x2Rn

kw.x/k D 1

1 � akwk0;

so the operator norm ofL�1 is bounded by.1� a/�1.

4.4 Hartman-Grobman Theorem: Part 4

The Contraction Map

Recall that we are looking for fixed pointsv of the map‚ WD L�1 ı ‰, where
‰.v/ WD g ı .I C v/ ı A�1. We have established thatL�1 is a well-defined
linear map fromC 0

b
.Rn/ to C 0

b
.Rn/ and that its operator norm is bounded by

.1� a/�1. This means that‚ is a well-defined (nonlinear) map fromC 0
b
.Rn/ to
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C 0
b
.Rn/; furthermore, ifv1; v2 2 C 0

b
.Rn/, then

k‚.v1/ �‚.v2/k0 D kL�1.‰.v1/ �‰.v2//k0 � 1

1 � ak‰.v1/ �‰.v2/k0

D 1

1 � akg ı .I C v1/ ı A�1 � g ı .I C v2/ ı A�1k0

D 1

1 � a sup
x2Rn

kg.A�1x C v1.A
�1x//� g.A�1x C v2.A

�1x//k

� "

1 � a sup
x2Rn

k.A�1x C v1.A
�1x//� .A�1x C v2.A

�1x//k

D "

1 � a sup
x2Rn

kv1.A�1x/� v2.A�1x/k

D "

1� a sup
y2Rn

kv1.y/ � v2.y/k D "

1� a
kv1 � v2k0:

This shows that‚ is a contraction, since" was chosen to be less than1 � a.
By the contraction mapping theorem, we know that‚ has a unique fixed point
v 2 C 0

b
.Rn/; the functionh WD ICv satisfiesF ıh D hıA, whereF WD ACg.

It remains to show thath is a homeomorphism.

Injectivity

Before we show thath itself is injective, we show thatF is injective. Suppose
it weren’t. Then we could choosex1; x2 2 R

n such thatx1 ¤ x2 butF.x1/ D
F.x2/. This would mean thatAx1 C g.x1/ D Ax2 C g.x2/, so

kA.x1 � x2/k
kx1 � x2k

D kAx1 � Ax2k
kx1 � x2k

D kg.x1/ � g.x2/k
kx1 � x2k

� Lip.g/

< " inf
x¤0

kAxk
kxk ;

which would be a contradiction.
Now we show thath is injective. Letx1; x2 2 R

n satisfyingh.x1/ D h.x2/

be given. Then

h.Ax1/ D F.h.x1// D F.h.x2// D h.Ax2/;

and, by induction, we haveh.Anx1/ D h.Anx2/ for everyn 2 N. Also,

F.h.A�1x1// D h.AA�1x1/ D h.x1/ D h.x2/ D h.AA�1x2/

D F.h.A�1x2//;
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so the injectivity ofF implies thath.A�1x1/ D h.A�1x2/; by induction, we
haveh.A�nx1/ D h.A�nx2/ for everyn 2 N. Setz D x1�x2. SinceI D h�v,
we know that for anyn 2 Z

kAnzk D kAnx1 � Anx2k
D k.h.Anx1/ � v.Anx1// � .h.Anx2/ � v.Anx2//k
D kv.Anx1/ � v.Anx2/k � 2kvk0:

Because of the way the norm was chosen, we then know that forn � 0

kPCzk � ankAnPCzk � ankAnzk � 2ankvk0 ! 0;

asn " 1, and we know that forn � 0

kP�zk � a�nkAnP�zk � a�nkAnzk � 2a�nkvk0 ! 0;

asn # �1. Hence,z D P�z C PCz D 0, sox1 D x2.

Surjectivity

It may seem intuitive that a map likeh that is a bounded perturbation of the
identity is surjective. Unfortunately, there does not appear to be a way of proving
this that is simultaneously elementary, short, and complete. We will therefore
rely on the following topological theorem without proving it.

Theorem. (Invariance of Domain)Every continuous injective map fromRn to
R
n maps open sets to open sets.

In particular, this theorem implies thath.Rn/ is open. If we can show that
h.Rn/ is closed, then (sinceh.Rn/ is clearly nonempty) this will mean that
h.Rn/ D R

n, i.e., h is surjective.
So, suppose we have a sequence.h.xk// of points inh.Rn/ that converges to

a pointy 2 R
n. Without loss of generality, assume that

kh.xk/ � yk � 1

for everyk. This implies thatkh.xk/k � kyk C 1, which in turn implies that
kxkk � kyk C kvk0 C 1. Thus, the sequence.xk/ is bounded and therefore
has a subsequence.xk`

/ converging to some pointx0 2 R
n. By continuity of

h, .h.xk`
// converges toh.x0/, which means thath.x0/ D y. Hence,h.Rn/ is

closed.
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Continuity of the Inverse

The bijectivity ofh implies thath�1 is defined. To complete the verification that
h is a homeomorphism, we need to confirm thath�1 is continuous. But this is an
immediate consequence of the the Invariance of Domain Theorem.

4.5 Hartman-Grobman Theorem: Part 5

Modifying the Vector Field

Consider the continuously differentiable autonomous ODE

Px D f .x/ (4.6)

with an equilibrium point that, without loss of generality,is located at the origin.
For x near0, f .x/ � Bx, whereB D Df .0/. Our goal is to come up with
a modification Qf of f such that Qf .x/ D f .x/ for x near 0 and Qf .x/ � Bx

for all x. If we accomplish this goal, whatever information we obtainabout the
relationship between the equations

Px D Qf .x/ (4.7)

and
Px D Bx (4.8)

will also hold between (4.6) and (4.8) forx small.
Pickˇ W Œ0;1/ ! Œ0; 1� to be aC1 function satisfying

ˇ.s/ D
(

1 if s � 1

0 if s � 2;

and letC D sups2Œ0;1/ jˇ0.s/j. Given" > 0, pick r > 0 so small that

kDf .x/� Bk < "

2C C 1

wheneverkxk � 2r . (We can do this sinceDf .0/ D B andDf is continuous.)
Define Qf by the formula

Qf .x/ D Bx C ˇ

�kxk
r

�

.f .x/� Bx/:

Note that Qf is continuously differentiable, agrees withf for kxk � r , and agrees
with B for kxk � 2r . We claim that Qf � B has Lipschitz constant less than".
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Assuming, without loss of generality, thatkxk andkyk are less than or equal to
2r , we have (using the Mean Value Theorem)

k. Qf .x/� Bx/� . Qf .y/ � By/k

D




ˇ

�kxk
r

�

.f .x/� Bx/� ˇ
�kyk
r

�

.f .y/ � By/





� ˇ

�kxk
r

�

k.f .x/� Bx/ � .f .y/� By/k

C
ˇ
ˇ
ˇ
ˇ
ˇ

�kxk
r

�

� ˇ
�kyk
r

�ˇ
ˇ
ˇ
ˇ
kf .y/ � Byk

� "

2C C 1
kx � yk C C

jkxk � kykj
r

kyk "

2C C 1

� "kx � yk:

Now, consider the difference betweeneB and'.1; �/, where' is the flow
generated by Qf . Let g.x/ D '.1; x/ � eBx. Then, since Qf .x/ D B.x/ for
all largex, g.x/ D 0 for all largex. Also, g is continuously differentiable, so
g 2 C 1

b
.Rn/. If we apply the variation of constants formula to (4.7) rewritten as

Px D Bx C . Qf .x/ � Bx/;
we find that

g.x/ D
Z 1

0

e.1�s/B Œ Qf .'.s; x// � B'.s; x/� ds;

so

kg.x/ � g.y/k

�
Z 1

0

ke.1�s/Bkk. Qf .'.s; x// � B'.s; x// � . Qf .'.s; y// � B'.s; y//kds

� "

Z 1

0

ke.1�s/Bkk'.s; x/ � '.s; y/kds

� kx � yk"
Z 1

0

ke.1�s/Bkke.kBkC"/s � 1kds;

by continuous dependence on initial conditions. Since

"

Z 1

0

ke.1�s/Bkke.kBkC"/s � 1kds ! 0

as" # 0, we can make the Lipschitz constant ofg as small as we want by making
" small (through shrinking the neighborhood of the origin on which Qf andf
agree).
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Conjugacy for t D 1

If 0 is a hyperbolic equilibrium point of (4.6) (and therefore of(4.7)) then none
of the eigenvalues ofB are imaginary. SettingA D eB , it is not hard to show
that the eigenvalues ofA are the exponentials of the eigenvalues ofB, so none of
the eigenvalues ofA have modulus 1;i.e., A is hyperbolic. Also,A is invertible
(sinceA�1 D e�B), so we can apply the global Hartman-Grobman Theorem for
maps and conclude that there is a homeomorphismh W R

n ! R
n such that

'.1; h.x// D h.eBx/ (4.9)

for everyx 2 R
n (where' is the flow corresponding to (4.7)).

Conjugacy for t ¤ 1

For the Hartman-Grobman Theorem for flows, we need

'.t; h.x// D h.etBx/

for everyx 2 R
n andeveryt 2 R. Fix t 2 R, and consider the functionQh defined

by the formula
Qh.x/ D '.t; h.e�tBx//: (4.10)

As the composition of homeomorphisms,Qh is a homeomorphism. Furthermore,
the fact thath satisfies (4.9) implies that

'.1; Qh.x// D '.1; '.t; h.e�tBx/// D '.t; '.1; h.e�tBx///

D '.t; h.eBe�tBx// D '.t; h.e�tBeBx/// D Qh.eBx/;

so (4.9) holds ifh is replaced byQh.
Now,

Qh � I D '.t; �/ ı h ı e�tB � I
D .'.t; �/ � etB/ ı h ı e�tB C etB ı .h� I / ı e�tB DW v1 C v2:

The fact that'.t; x/ and etBx agree for largex implies that'.t; �/ � etB is
bounded, sov1 is bounded, as well. The fact thath � I is bounded implies that
v2 is bounded. Hence,Qh� I is bounded.

The uniqueness part of the global Hartman-Grobman Theorem for maps now
implies thath and Qh must be the same function. Using this fact and substituting
y D e�tBx in (4.10) yields

h.etBy/ D '.t; h.y//

for everyy 2 R
n and everyt 2 R

n. This means that the flows generated by (4.8)
and (4.7) are globally topologically conjugate, and the flows generated by (4.8)
and (4.6) are locally topologically conjugate.
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4.6 Constructing Conjugacies

The Hartman-Grobman Theorem gives us conditions under which a conjugacy
between certain maps or between certain flows may exist. Somelimitations of
the theorem are:

� The conditions it gives are sufficient, but certainly not necessary, for a
conjugacy to exist.

� It doesn’t give a simple way to construct a conjugacy (in closed form, at
least).

� It doesn’t indicate how smooth the conjugacy might be.

These shortcomings can be addressed in a number of differentways, but we won’t
really go into those here. We will, however, consider some aspects of conjuga-
cies.

Differentiable Conjugacies of Flows

Consider the autonomous differential equations

Px D f .x/ (4.11)

and
Px D g.x/; (4.12)

generating, respectively, the flows' and . Recall that the conjugacy equation
for ' and is

'.t; h.x// D h. .t; x// (4.13)

for everyx andt . Not only is (4.13) somewhat complicated, it appears to require
you to solve (4.11) and (4.12) before you can look for a conjugacyh. Suppose,
however, thath is a differentiable conjugacy. Then, we can differentiate both
sides of (4.13) with respect tot to get

f .'.t; h.x/// D Dh. .t; x//g. .t; x//: (4.14)

Substituting (4.13) into the left-hand side of (4.14) and then replacing .t; x/ by
x, we get the equivalent equation

f .h.x// D Dh.x/g.x/: (4.15)

Note that (4.15) involves the functions appearing in the differential equations,
rather than the formulas for the solutions of those equations. Note, also, that
(4.15) is the same equation you would get if you took a solution x of (4.12) and
required the functionh ı x to satisfy (4.11).
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An Example for Flows

As the simplest nontrivial example, leta; b 2 R be distinct constants and con-
sider the equations

Px D ax (4.16)

and
Px D bx (4.17)

for x 2 R. Under what conditions ona andb does there exist a topological
conjugacyh taking solutions of (4.17) to solutions of (4.16)? Equation(4.15)
tells us that ifh is differentiable then

ah.x/ D h0.x/bx: (4.18)

If b ¤ 0, then separating variables in (4.18) implies that on intervals avoiding
the originh must be given by the formula

h.x/ D C jxja=b (4.19)

for some constantC . Clearly, (4.19) does not define a topological conjugacy for
a single constantC , because it fails to be injective onR; however, the formula

h.x/ D
(

xjxja=b�1 if x ¤ 0

0 if x D 0;
(4.20)

which is obtained from (4.19) by takingC D 1 for positivex andC D �1
for negativex, defines a homeomorphism ifab > 0. Even though the function
defined in (4.20) may fail to be differentiable at 0, substitution of it into

etah.x/ D h.etbx/; (4.21)

which is (4.13) for this example, shows that it does, in fact,define a topological
conjugacy whenab > 0. (Note that in no case is this aC 1-conjugacy, since
eitherh0.0/ or .h�1/0.0/ does not exist.)

Now, suppose thatab � 0. Does a topological (possibly nondifferentiable)
conjugacy exist? Ifab D 0, then (4.21) implies thath is constant, which violates
injectivity, so suppose thatab < 0. In this case, substitutingx D 0 andt D 1

into (4.21) implies thath.0/ D 0. Fixing x ¤ 0 and lettingt sgnb # �1 in
(4.21), we see that the continuity ofh implies thath.x/ D 0, also, which again
violates injectivity.

Summarizing, fora ¤ b there is a topological conjugacy of (4.16) and (4.17)
if and only if ab > 0, and these are notC 1-conjugacies.
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An Example for Maps

Let’s try a similar analysis for maps. Leta; b 2 R be distinct constants, and
consider the mapsF.x/ D ax andG.x/ D bx (for x 2 R). For what.a; b/-
combinations does there exist a homeomorphismh W R ! R such that

F.h.x// D h.G.x// (4.22)

for everyx 2 R? Canh andh�1 be chosen to be differentiable?
For these specific maps, the general equation (4.22) becomes

ah.x/ D h.bx/: (4.23)

If a D 0 or b D 0 or a D 1 or b D 1, then injectivity is immediately violated.
Note that, by induction, (4.23) gives

anh.x/ D h.bnx/ (4.24)

for everyn 2 Z. In particular,a2h.x/ D h.b2x/, so the cases whena D �1 or
b D �1 cause the same problems as whena D 1 or b D 1.

So, from now on, assume thata; b … f�1; 0; 1g. Observe that:

� Settingx D 0 in (4.23) yieldsh.0/ D 0.

� If jbj < 1, then fixingx ¤ 0 in (4.24) and lettingn " 1, we havejaj < 1.

� If jbj > 1, we can, similarly, letn # �1 to conclude thatjaj > 1.

� If b > 0 anda < 0, then (4.23) implies thath.1/ andh.b/ have opposite
signs even though1 andb have the same sign; consequently, the Interme-
diate Value Theorem yields a contradiction to injectivity.

� If b < 0 anda > 0, then (4.23) gives a similar contradiction.

Thus, the only cases where we could possibly have conjugacy is if a andb
are both in the same component of

.�1;�1/ [ .�1; 0/ [ .0; 1/ [ .1;1/:

When this condition is met, experimentation (or experience) suggests tryingh of
the formh.x/ D xjxjp�1 for some constantp > 0 (with h.0/ D 0). This is a
homeomorphism fromR to R, and plugging it into (4.23) shows that it provides
a conjugacy ifa D bjbjp�1 or, in other words, if

p D log jaj
log jbj :
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Smooth Conjugacies

Sincea ¤ b, eitherh or h�1 fails to be differentiable at0. Is there some other
formula that provides aC 1-conjugacy? No, because if there were we could dif-
ferentiate both sides of (4.23) with respect tox and evaluate atx D 0 to get
h0.0/ D 0, which would mean that.h�1/0.0/ is undefined.

Exercise 16DefineF W R
2 ! R

2 by the formula

F

��

x

y

��

D
�

�x=2
2y C x2

�

;

and letA D DF.0/.

(a) Show that the mapsF andA are topologically conjugate.

(b) Show that the flows generated by the differential equations

Pz D F.z/

and
Pz D Az

are topologically conjugate.

(Hint: Try quadratic conjugacy functions.)

4.7 Smooth Conjugacies

The examples we looked at last time showing that topologicalconjugacies of-
ten cannot be chosen to be differentiable all involved two maps or vector fields
with different linearizations at the origin. What about when, as in the Hartman-
Grobman Theorem, we are looking for a conjugacy between a map(or flow)
and its linearization? An example of Hartman shows that the conjugacy cannot
always be chosen to beC 1.

Hartman’s Example

Consider the system
8

ˆ
<

ˆ
:

Px D ˛x

Py D .˛ � /y C "xz

Pz D �z;
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where˛ >  > 0 and" ¤ 0. We will not cut off this vector field but will instead
confine our attention tox; y; z small. A calculation shows that the time-1 map
F D '.1; �/ of this system is given by

F

0

@

2

4

x

y

z

3

5

1

A D

2

4

ax

ac.y C "xz/

cz

3

5 ;

wherea D e˛ andc D e� . Note thata > ac > 1 > c > 0. The time-1 mapB
of the linearization of the differential equation is given by

B

2

4

x

y

y

3

5 D

2

4

ax

acy

cz

3

5 :

A local conjugacyH D .f; g; h/ of B with F must satisfy

af .x; y; z/ D f .ax; acy; cz/

acŒg.x; y; z/C "f .x; y; z/h.x; y; z/� D g.ax; acy; cz/

ch.x; y; z/ D h.ax; acy; cz/

for everyx; y; z near0. Writing k.x; z/ for k.x; 0; z/, wherek 2 ff; g; hg, we
have

af .x; z/ D f .ax; cz/ (4.25)

acŒg.x; z/C "f .x; z/h.x; z/� D g.ax; cz/ (4.26)

ch.x; z/ D h.ax; cz/ (4.27)

for everyx; z near0.
Before proceeding further, we state and prove a lemma.

Lemma. Suppose thatj is a continuous real-valued function of a real variable,
defined on an open intervalU centered at the origin. Suppose that there are
constants̨ ; ˇ 2 R such that

j̨.u/ D j.ˇu/ (4.28)

wheneveru; ˇu 2 U . Then ifjˇj < 1 < j˛j or j˛j < 1 < jˇj, j.u/ D 0 for
everyu 2 U .

Proof. If jˇj < 1 < j˛j, fix u 2 U and apply (4.28) inductively to get

˛nj.u/ D j.ˇnu/ (4.29)
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for everyn 2 N. Letting n " 1 in (4.29), we see thatj.u/ must be zero. If
j˛j < 1 < jˇj, substitutev D ˇu into (4.28) to get

j̨.ˇ�1v/ D j.v/ (4.30)

for everyv; ˇ�1v 2 U . Fix v 2 U , and iterate (4.30) to get

˛nj.ˇ�nv/ D j.v/ (4.31)

for everyn 2 N. Lettingn " N in (4.31), we getj.v/ D 0.

Settingx D 0 in (4.25) and applying the Lemma gives

f .0; z/ D 0 (4.32)

for everyz near zero. Settingz D 0 in (4.27) and applying the Lemma gives

h.x; 0/ D 0 (4.33)

for everyx near zero. Settingx D 0 in (4.26), using (4.32), and applying the
Lemma gives

g.0; z/ D 0 (4.34)

for everyz near zero. If we setz D 0 in (4.26), use (4.33), and then differentiate
both sides with respect tox, we getcgx.x; 0/ D gx.ax; 0/; applying the Lemma
yields

gx.x; 0/ D 0 (4.35)

for everyx near zero. Settingz D 0 in (4.34) and using (4.35), we get

g.x; 0/ D 0 (4.36)

for everyx near zero.
Now, using (4.26) and mathematical induction, it can be verified that

ancnŒg.x; z/C n"f .x; z/h.x; z/� D g.anx; cnz/ (4.37)

for everyn 2 N. Similarly, mathematical induction applied to (4.25) gives

f .x; z/ D a�nf .anx; cnz/ (4.38)

for everyn 2 N. If we substitute (4.38) into (4.37), divide through bycn, and
replacex by a�nx we get

ang.a�nx; z/C n"f .x; cnz/h.a�nx; z/ D c�ng.x; cnz/ (4.39)
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4. CONJUGACIES

for everyn 2 N.
The existence ofgx.0; z/ andgz.x; 0/ along with equations (4.34) and (4.36)

imply thatang.a�nx; z/ andc�ng.x; cnz/ stay bounded asn " 1. Using this
fact, and lettingn " 1 in (4.39), we get

f .x; 0/h.0; z/ D 0;

sof .x; 0/ D 0 or h.0; z/ D 0. If f .x; 0/ D 0, then, in combination with (4.33)
and (4.36), this tells us thatH is not injective in a neighborhood of the origin.
Similarly, if h.0; z/ D 0 then, in combination with (4.32) and (4.34), this implies
a violation of injectivity, as well.

Poincaré’s Linearization Theorem

Suppose thatf W R
n ! R

n is analytic and satisfiesf .0/ D 0. It is possible to
establish conditions under which there is ananalyticchange of variables that will
turn the nonlinear equation

Px D f .x/ (4.40)

into its linearization

Pu D Df .0/u: (4.41)

Definition. Let �1; �2; : : : ; �n be the eigenvalues ofDf .0/, listed according to
multiplicity. We say thatDf .0/ is resonantif there are nonnegative integers
m1;m2; : : : ;mn and a numbers 2 f1; 2; : : : ; ng such that

n
X

kD1

mk � 2

and

�s D
n
X

kD1

mk�k:

If Df .0/ is not resonant, we say that it isnonresonant.

Note that in Hartman’s example there is resonance. A study ofnormal forms
reveals that nonresonance permits us to make changes of variable that remove
nonlinear terms up to any specified order in the right-hand side of the differen-
tial equation. In order to be able to guarantee thatall nonlinear terms may be
removed, some extra condition beyond nonresonance is required.
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Definition. We say that.�1; �2; : : : ; �n/ 2 C
n satisfy aSiegel conditionif there

are constantsC > 0 and� > 1 such that
ˇ
ˇ
ˇ
ˇ
ˇ
�s �

n
X

kD1

mk�k

ˇ
ˇ
ˇ
ˇ
ˇ

� C

.
Pn
kD1mk/

�

for all nonnegative integersm1;m2; : : : ;mn satisfying

n
X

kD1

mk � 2:

Theorem. (Poincaŕe’s Linearization Theorem)Suppose thatf is analytic, and
that all the eigenvalues ofDf .0/ are nonresonant and either all lie in the open
left half-plane, all lie in the open right half-plane, or satisfy a Siegel condition.
Then there is a change of variablesu D g.x/ that is analytic near0 and that
turns(4.40) into (4.41)near0.
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5

Invariant Manifolds

5.1 Stable Manifold Theorem: Part 1

The Hartman-Grobman Theorem states that the flow generated by a smooth vec-
tor field in a neighborhood of a hyperbolic equilibrium pointis topologically
conjugate with the flow generated by its linearization. Hartman’s counterexam-
ple shows that, in general, the conjugacy cannot be taken to beC 1. However, the
Stable Manifold Theorem will tell us that there are important structures for the
two flows that can be matched up by smooth changes of variable.In this section,
we will discuss the Stable Manifold Theorem on an informal level and discuss
two different approaches to proving it.

Let f W � � R
n ! R

n beC 1, and let' W R �� ! � be the flow generated
by the differential equation

Px D f .x/: (5.1)

Suppose thatx0 is a hyperbolic equilibrium point of (5.1).

Definition. The (global)stable manifoldof x0 is the set

W s.x0/ WD
n

x 2 �
ˇ
ˇ
ˇ lim
t"1

'.t; x/ D x0

o

:

Definition. The (global)unstable manifoldof x0 is the set

W u.x0/ WD
n

x 2 �
ˇ
ˇ
ˇ lim
t#�1

'.t; x/ D x0

o

:

Definition. Given a neighborhoodU of x0, the localstable manifoldof x0 (rela-
tive toU ) is the set

W s
loc.x0/ WD

n

x 2 U

ˇ
ˇ
ˇ C.x/ � U and lim

t"1
'.t; x/ D x0

o

:
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5. INVARIANT MANIFOLDS

Definition. Given a neighborhoodU of x0, the localunstable manifoldof x0
(relative toU ) is the set

W u
loc.x0/ WD

n

x 2 U

ˇ
ˇ
ˇ �.x/ � U and lim

t#�1
'.t; x/ D x0

o

:

Note that:

� W s
loc.x0/ � W s.x0/, andW u

loc.x0/ � W u.x0/.

� W s
loc.x0/ andW u

loc.x0/ are both nonempty, since they each containx0.

� W s.x0/ andW u.x0/ are invariant sets.

� W s
loc.x0/ is positively invariant, andW u

loc.x0/ is negatively invariant.

� W s
loc.x0/ is not necessarilyW s.x0/ \ U , andW u

loc.x0/ is not necessarily
W u.x0/ \ U .

W s
loc.x0/ is not necessarily invariant, since it might not be negatively invari-

ant, andW u
loc.x0/ is not necessarily invariant, since it might not be positively

invariant. They do, however, possess what is known asrelative invariance.

Definition. A subsetA of a setB is positively invariant relative toB if for every
x 2 A and everyt � 0, '.t; x/ 2 A whenever'.Œ0; t �; x/ � B.

Definition. A subsetA of a setB is negatively invariant relative toB if for every
x 2 A and everyt � 0, '.t; x/ 2 A whenever'.Œt; 0�; x/ � B.

Definition. A subsetA of a setB is invariant relative toB if it is negatively
invariant relative toB and positively invariant relative toB.

W s
loc.x0/ is negatively invariant relative toU and is therefore invariant relative

to U . W u
loc.x0/ is positively invariant relative toU and is therefore invariant

relative toU .
Recall that a(k-)manifold is a set that is locally homeomorphic to an open

subset ofRk. Although the word “manifold” appeared in the names ofW s
loc.x0/,

W u
loc.x0/,W

s.x0/, andW u.x0/, it is not obvious from the defintions of these sets
that they are, indeed, manifolds. One of the consequences ofthe Stable Manifold
Theorem is that, ifU is sufficiently small,W s

loc.x0/ andW u
loc.x0/ are manifolds.

(W s.x0/ andW u.x0/ are what are known asimmersedmanifolds.)
For simplicity, let’s now assume thatx0 D 0. Let Es be the stable subspace

of Df .0/, and letEu be the unstable subspace ofDf .0/. If f is linear, then
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W s.0/ D Es andW u.0/ D Eu. The Stable Manifold Theorem says that in the
nonlinear case not only are the Stable and Unstable Manifolds indeed manifolds,
but they are tangent toEs andEu, respectively, at the origin. This is information
that the Hartman-Grobman Theorem does not provide.

More precisely there are neighborhoodsUs of the origin inEs andUu of
the origin inEu and smooth mapshs W Us ! Uu andhu W Uu ! Us such
thaths.0/ D hu.0/ D 0 andDhs.0/ D Dhu.0/ D 0 and the local stable and
unstable manifolds of0 relative toUs ˚ Uu satisfy

W s
loc.0/ D

˚

x C hs.x/
ˇ
ˇ x 2 Us

	

and
W u

loc.0/ D
˚

x C hu.x/
ˇ
ˇ x 2 Uu

	

:

Furthermore, not only do solutions of (5.1) in the stable manifold converge to0
as t " 1, they do so exponentially quickly. (A similar statement canbe made
about the unstable manifold.)

Liapunov-Perron Approach

This approach to proving the Stable Manifold Theorem rewrites (5.1) as

Px D Ax C g.x/; (5.2)

whereA D Df .0/. The Variation of Parameters formula gives

x.t2/ D e.t2�t1/Ax.t1/C
Z t2

t1

e.t2�s/Ag.x.s// ds; (5.3)

for every t1; t2 2 R. Settingt1 D 0 and t2 D t , and projecting (5.3) ontoEs

yields

xs.t/ D etAsxs.0/C
Z t

0

e.t�s/Asgs.x.s// ds;

where the subscripts attached to a quantity denotes the projection of that quantity
ontoEs. If we assume that the solutionx.t/ lies onW s.0/, sett2 D t , let t1 " 1,
and project (5.3) ontoEu, we get

xu.t/ D �
Z 1

t

e.t�s/Augu.x.s// ds:

Hence, solutions of (5.2) inW s.0/ satisfy the integral equation

x.t/ D etAsxs.0/C
Z t

0

e.t�s/Asgs.x.s// ds �
Z 1

t

e.t�s/Augu.x.s// ds:
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Now, fix as 2 Es, and define a functionalT by

.T x/.t/ D etAsas C
Z t

0

e.t�s/Asgs.x.s// ds �
Z 1

t

e.t�s/Augu.x.s// ds:

A fixed pointx of this functional will solve (5.2), will have a range contained in
the stable manifold, and will satisfyxs.0/ D as. If we seths.as/ D xu.0/ and
definehs similarly for other inputs, the graph ofhs will be the stable manifold.

Hadamard Approach

The Hadamard approach uses what is known as a graph transform. Here we
define a functional not by an integral but by letting the graphof the input function
move with the flow' and selecting the output function to be the function whose
graph is the image of the original graph after, say, 1 unit of time has elapsed.

More precisely, supposeh is a function fromEs to Eu. Define its graph
transformF Œh� to be the function whose graph is the set

˚

'.1; � C h.�//
ˇ
ˇ � 2 Es

	

: (5.4)

(That (5.4) is the graph of a function fromEs to Eu—if we identify Es � Eu

with Es ˚Eu—is, of course, something that needs to be shown.) Another way of
putting this is that for each� 2 Es,

F Œh�..'.1; � C h.�///s/ D .'.1; � C h.�///uI

in other words,

F Œh� ı �s ı '.1; �/ ı .id Ch/ D �u ı '.1; �/ ı .id Ch/;

where�s and�u are projections ontoEs andEu, respectively. A fixed point
of the graph transform functionalF will be an invariant manifold, and it can be
show that it is, in fact, the stable manifold.

5.2 Stable Manifold Theorem: Part 2

Statements

Given a normed vector spaceX and a positive numberr , we letX .r/ stand for
the closed ball of radiusr centered at0 in X .

The first theorem refers to the differential equation

Px D f .x/: (5.5)
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Theorem. (Stable Manifold Theorem)Suppose that� is an open neighbor-
hood of the origin inRn, andf W � ! R

n is aC k function (k � 1) such that
0 is a hyperbolic equilibrium point of(5.5). LetEs ˚ Eu be the decomposition
of R

n corresponding to the matrixDf .0/. Then there is a normk � k on R
n,

a numberr > 0, and aC k functionh W Es.r/ ! Eu.r/ such thath.0/ D 0

andDh.0/ D 0 and such that the local stable manifoldW s
loc.0/ of 0 relative to

B.r/ WD Es.r/˚ Eu.r/ is the set
˚

vs C h.vs/
ˇ
ˇ vs 2 Es.r/

	

:

Moreover, there is a constantc > 0 such that

W s
loc.0/ D

n

v 2 B.r/
ˇ
ˇ
ˇ C.v/ � B.r/ and lim

t"1
ect'.t; v/ D 0

o

:

Two immediate and obvious corollaries, which we will not state explicitly,
describe the stable manifolds of other equilibrium points (via translation) and
describe unstable manifolds (by time reversal).

We will actually prove this theorem by first proving an analogous theorem
for maps (much as we did with the Hartman-Grobman Theorem). Given a neigh-
borhoodU of a fixed pointp of a mapF , we can define the local stable manifold
of p (relative toU ) as

W s
loc.p/ WD

n

x 2 U

ˇ
ˇ
ˇ F j .x/ 2 U for everyj 2 N and lim

j"1
F j .x/ D p

o

:

Theorem. (Stable Manifold Theorem for Maps)Suppose that� is an open
neighborhood of the origin inRn, andF W � ! � is an invertibleC k function
(k � 1) for whichF.0/ D 0 and the matrixDF.0/ is hyperbolic and invertible.
LetEs˚Eu.D E�˚EC/ be the decomposition ofR

n corresponding to the matrix
DF.0/. Then there is a normk � k on R

n, a numberr > 0, a numberQ� 2 .0; 1/,
and aC k functionh W Es.r/ ! Eu.r/ such thath.0/ D 0 andDh.0/ D 0 and
such that the local stable manifoldW s

loc.0/ of0 relative toB.r/ WD Es.r/˚Eu.r/

satisfies

W s
loc.0/ D

˚

vs C h.vs/
ˇ
ˇ vs 2 Es.r/

	

D
n

v 2 B.r/
ˇ
ˇ
ˇ F j .v/ 2 B.r/ for everyj 2 N

o

D
n

v 2 B.r/
ˇ
ˇ
ˇ F j .v/ 2 B.r/ andkF j .v/k � Q�jkvk for all j 2 N

o

:

Preliminaries

The proof of the Stable Manifold Theorem for Maps will be broken up into a
series of lemmas. Before stating and proving those lemmas, we need to lay a
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foundation by introducing some terminology and notation and by choosing some
constants.

We know thatF.0/ D 0 andDF.0/ is hyperbolic. ThenRn D Es ˚ Eu, �s
and�u are the corresponding projection operators,Es andEu are invariant under
DF.0/, and there are constants� < 1 and� > 1 such that all of the eigenvalues
of DF.0/jEs have magnitude less than� and all of the eigenvalues ofDF.0/jEu

have magnitude greater than�.
When we deal with a matrix representation ofDF.q/, it will be with respect

to a basis that consists of a basis forEs followed by a basis forEu. Thus,

DF.q/ D

2

4

Ass.q/ Asu.q/

Aus.q/ Auu.q/

3

5 ;

where, for example,Asu.q/ is a matrix representation of�sDF.q/jEu in terms
of the basis forEu and the basis forEs. Note that, by invariance,Asu.0/ D
Aus.0/ D 0. Furthermore, we can pick our basis vectors so that, withk � k being
the corresponding Euclidean norm of a vector inEs or in Eu,

kAss.0/k WD sup
vs¤0

kAss.0/vsk
kvsk

< �

and

m.Auu.0// WD inf
vu¤0

kAuu.0/vuk
kvuk > �:

(The functionalm.�/ defined implicitly in the last formula is sometimes called
the minimum normeven though it is not a norm.) For a vector inv 2 R

n, let
kvk D maxfk�svk; k�uvkg. This will be the norm onRn that will be used
throughout the proof. Note thatB.r/ WD Es.r/ ˚ Eu.r/ is the closed ball of
radiusr in R

n by this norm.
Next, we chooser . Fix ˛ > 0. Pick" > 0 small enough that

�C "˛ C " < 1 < � � "=˛ � 2":

Pick r > 0 small enough that ifq 2 B.r/ then

kAss.q/k < �;
m.Auu.q// > �;

kAsu.q/k < ";
kAus.q/k < ";

kDF.q/ �DF.0/k < ";
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andDF.q/ is invertible. (We can do this sinceF isC 1, soDF.�/ is continuous.)
Now, define

W s
r WD

1
\

jD0

F�j .B.r//;

and note thatW s
r is the set of all points inB.r/ that produce forward semiorbits

(under the discrete dynamical system generated byF ) that stay inB.r/ for all
forward iterates. By definition,W s

loc.0/ � W s
r ; we will show that these two sets

are, in fact, equal.
Two other types of geometric sets play vital roles in the proof: conesand

disks. The cones are of two types:stableand unstable. The stable cone (of
“slope” ˛) is

C s.˛/ WD
˚

v 2 R
n
ˇ
ˇ k�uvk � ˛k�svk

	

;

and the unstable cone (of “slope”˛) is

Cu.˛/ WD
˚

v 2 Rn
ˇ
ˇ k�uvk � ˛k�svk

	

:

An unstable diskis a set of the form
˚

vu C  .vu/
ˇ
ˇ vu 2 Eu.r/

	

for some Lipschitz continuous function W Eu.r/ ! Es.r/ with Lipschitz con-
stant (less than or equal to)˛�1.

5.3 Stable Manifold Theorem: Part 3

The Action of DF.p/ on the Unstable Cone

The first lemma shows that if the derivative of the map is applied to a point in the
unstable cone, the image is also in the unstable cone.

Lemma. (Linear Invariance of the Unstable Cone)If p 2 B.r/, then

DF.p/Cu.˛/ � Cu.˛/:

Proof. Let p 2 B.r/ andv 2 Cu.˛/. Then, if we letvs D �sv andvu D �uv,
we havekvuk � ˛kvsk, so

k�uDF.p/vk D kAus.p/vs C Auu.p/vuk
� kAuu.p/vuk � kAus.p/vsk
� m.Auu.p//kvuk � kAus.p/kkvsk � �kvuk � "kvsk
� .� � "=˛/kvuk;
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and

k�sDF.p/vk D kAss.p/vs C Asu.p/vuk � kAss.p/vsk C kAsu.p/vuk
� kAss.p/kkvsk C kAsu.p/kkvuk � �kvsk C "kvuk
� .�=˛ C "/kvuk:

Since� � "=˛ � ˛.�=˛ C "/,

k�uDF.p/vk � ˛k�sDF.p/vk;

soDF.p/v 2 Cu.˛/.

The Action of F on Moving Unstable Cones

The main part of the second lemma is that moving unstable cones are positively
invariant. More precisely, if two points are inB.r/ and one of the two points is
in a translate of the unstable cone that is centered at the second point, then their
images underF satisfy the same relationship. The lemma also provides estimates
on the rates at which the stable and unstable parts of the difference between the
two points contract or expand, respectively.

In this lemma (and later) we use the convention that ifX andY are subsets
of a vector space, then

X C Y WD
˚

x C y
ˇ
ˇ x 2 X andy 2 Y

	

:

Lemma. (Moving Unstable Cones)If p; q 2 B.r/ andq 2 fpg CCu.˛/, then:

(a) k�s.F.q/ � F.p//k � .�=˛ C "/k�u.q � p/k;

(b) k�u.F.q/ � F.p//k � .� � "=˛ � "/k�u.q � p/k;

(c) F.q/ 2 fF.p/g C Cu.˛/.

Proof. We will write differences as integrals (using the Fundamental Theorem
of Calculus) and use our estimates onDF.v/, for v 2 B.r/, to estimate these
integrals.
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SinceB.r/ is convex,

k�s.F.q/ � F.p//k D





Z 1

0

d

dt
�sF.tq C .1� t/p/ dt






D





Z 1

0

�sDF.tq C .1 � t/p/.q � p/ dt





D





Z 1

0

Ass.tq C .1 � t/p/�s.q � p/ dt

C
Z 1

0

Asu.tq C .1� t/p/�u.q � p/ dt





�
Z 1

0

kAss.tq C .1 � t/p/kk�s.q � p/kdt

C
Z 1

0

kAsu.tq C .1 � t/p/kk�u.q � p/kdt

�
Z 1

0

Œ�k�s.q � p/k C "k�u.q � p/k� dt � .�=˛ C "/k�u.q � p/k:

This gives(a).
Similarly,

k�u.F.q/ � F.p//k

D





Z 1

0

Aus.tq C .1 � t/p/�s.q � p/ dt

C
Z 1

0

Auu.tq C .1 � t/p/�u.q � p/ dt





�





Z 1

0

Auu.0/�u.q � p/ dt





�





Z 1

0

ŒAus.tq C .1� t/p/�s.q � p/ dt





�





Z 1

0

.Auu.tq C .1� t/p/ � Auu.0//�u.q � p/ dt





� m.Auu.0//k�u.q � p/k �
Z 1

0

kAus.tq C .1 � t/p/kk�s.q � p/kdt

�
Z 1

0

kAuu.tq C .1� t/p/ � Auu.0/kk�u.q � p/kdt

� �k�u.q � p/k � "k�s.q � p/k � "k�u.q � p/k
� .� � "=˛ � "/k�u.q � p/k:

This gives(b).
121



5. INVARIANT MANIFOLDS

From(a), (b), and the choice of", we have

k�u.F.q/ � F.p//k � .� � "=˛ � "/k�u.q � p/k
� .�C "˛/k�u.q � p/k
� ˛k�s.F.q/ � F.p//k;

soF.q/ � F.p/ 2 Cu.˛/, which means that(c) holds.

5.4 Stable Manifold Theorem: Part 4

Stretching ofC 1 Unstable Disks

The next lemma shows that ifF is applied to aC 1 unstable disk (i.e., an unstable
disk that is the graph of aC 1 function), then part of the image gets stretched out
of B.r/, but the part that remains in is again aC 1 unstable disk.

Lemma. (Unstable Disks)LetD0 be aC 1 unstable disk, and recursively define

Dj D F.Dj�1/ \ B.r/

for eachj 2 N. Then eachDj is aC 1 unstable disk, and

diam

0

@�u

j
\

iD0

F�i .Di /

1

A � 2.�� "=˛ � "/�j r (5.6)

for eachj 2 N.

Proof. Because of induction, we only need to handle the casej D 1. The es-
timate on the diameter of the�u projection of the preimage ofD1 underF is
a consequence of part(b) of the lemma on moving invariant cones. ThatD1 is
the graph of an̨ �1-Lipschitz function 1 from a subset ofEu.r/ to Es.r/ is a
consequence of part(c) of that same lemma. Thus, all we need to show is that
dom. 1/ D Eu.r/ and that 1 is C 1.

Let  0 W Eu.r/ ! Es.r/ be theC 1 function (with Lipschitz constant less
than or equal tǫ �1) such that

D0 D
˚

vu C  0.vu/
ˇ
ˇ vu 2 Eu.r/

	

:

Defineg W Eu.r/ ! Eu by the formulag.vu/ D �uF.vu C  0.vu//. If we can
show that for eachy 2 Eu.r/ there existsx 2 Eu.r/ such that

g.x/ D y; (5.7)
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then we will know that dom. 1/ D Eu.r/.
Let y 2 Eu.r/ be given. LetL D Auu.0/. Sincem.L/ > �, we know

thatL�1 2 L.Eu; Eu/ exists and thatkL�1k � 1=�. DefineG W Eu.r/ ! Eu

by the formulaG.x/ D x � L�1.g.x/ � y/, and note that fixed points ofG
are solutions of (5.7), and vice versa. We shall show thatG is a contraction and
takes the compact setEu.r/ into itself and that, therefore, (5.7) has a solution
x 2 Eu.r/.

Note that

Dg.x/ D �uDF.x C  0.x//.I CD 0.x//

D Auu.x C  0.x//C Aus.x C  0.x//D 0.x/;

so

kDG.x/k D kI � L�1Dg.x/k � kL�1kkL �Dg.x/k

� 1

�
.kAuu.x C  0.x//� Auu.0/k

C kAus.x C  0.x//kkD 0.x/k/

� "C "=˛

�
< 1:

The Mean Value Theorem then implies thatG is a contraction.
Now, suppose thatx 2 Eu.r/. Then

kG.x/k � kG.0/k C kG.x/�G.0/k

� kL�1k.kg.0/k C kyk/C "C "=˛

�
kxk

� 1

�
.kg.0/k C r C ."C "=˛/r/:

Let � W Es.r/ ! Eu.r/ be defined by the formula�.vs/ D �uF.vs/. Since
�.0/ D 0 and, for anyvs 2 Es.r/, kD�.vs/k D kAus.vs/k � ", the Mean Value
Theorem tells us that

kg.0/k D k�uF. 0.0//k D k�. 0.0//k � "k 0.0/k � "r: (5.8)

Plugging (5.8) into the previous estimate, we see that

kG.x/k � 1

�
."r C r C ."C "=˛/r/ D 1C "=˛ C 2"

�
r < r;

soG.x/ 2 Eu.r/.
That completes the verification that (5.7) has a solution foreachy 2 Eu.r/

and, therefore, that dom. 1/ D Eu.r/. To finish the proof, we need to show that
 1 isC 1. Let Qg be the restriction ofg to g�1.D1/, and observe that

 1 ı Qg D �s ı F ı .I C  0/: (5.9)
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We have shown thatQg is a bijection ofg�1.D1/ with D1 and, by the Inverse
Function Theorem,Qg�1 isC 1. Thus, if we rewrite (5.9) as

 1 D �s ı F ı .I C  0/ ı Qg�1

we can see that 1, as the composition ofC 1 functions, is indeedC 1.

W s
r is a Lipschitz Manifold

Recall thatW s
r was defined to be all points in the boxB.r/ that produced forward

orbits that remain confined withinB.r/. The next lemma shows that this set is a
manifold.

Lemma. (Nature ofW s
r ) W s

r is the graph of a functionh W Es.r/ ! Eu.r/ that
satisfiesh.0/ D 0 and that has a Lipschitz constant less than or equal to˛.

Proof. For eachvs 2 Eu.r/, consider the set

D WD fvsg C Eu.r/:

D is aC 1 unstable disk, so by the lemma on unstable disks, the subsetSj of D
that stays inB.r/ for at leastj iterations ofF has a diameter less than or equal to
2.��"=˛�"/�j r . By the continuity ofF , Sj is closed. Hence, the subsetS1 of
D that stays inB.r/ for an unlimited number of iterations ofF is the intersection
of a nested collection of closed sets whose diameters approach 0. This means
thatS1 is a singleton. Call the single point inS1 h.vs/.

It should be clear thatW s
r is the graph ofh. Thath.0/ D 0 follows from the

fact that0 2 W s
r , sinceF.0/ D 0. If h weren’t˛-Lipschitz, then there would

be two pointsp; q 2 W s
r such thatp 2 fqg C Cu.˛/. Repeated application of

parts(b) and(c) of the lemma on moving unstable cones would imply that either
F j .p/ orF j .q/ is outside ofB.r/ for somej 2 N, contrary to definition.

W s
loc.0/ is a Lipschitz Manifold

Our next lemma shows thatW s
loc.0/ D W s

r and that, in fact, orbits in this set
converge to0 exponentially. (The constantQ� in the statement of the theorem can
be chosen to be�C " if ˛ � 1.)

Lemma. (Exponential Decay)If ˛ � 1, then for eachp 2 W s
r ,

kF j .p/k � .�C "/j kpk: (5.10)

In particular,W s
r D W s

loc.0/.
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Proof. Suppose that̨ � 1 andp 2 W s
r . By mathematical induction (and the

positive invariance ofW s
r ), it suffices to verify (5.10) forj D 1. Since˛ � 1

the last lemma implies thatW s
r is the graph of a1-Lipschitz function. Since

F.p/ 2 W s
r , we therefore know that

kF.p/k D maxfk�sF.p/k; k�uF.p/kg D k�sF.p/k:

Using this and estimating, we find that

kF.p/k D





Z 1

0

d

dt
�sF.tp/ dt






D





Z 1

0

�sDF.tp/p dt






D





Z 1

0

ŒAss.tp/�sp C Asu.tp/�up� dt






�
Z 1

0

ŒkAss.tp/kk�spk C kAsu.tp/kk�upk� dt

� �k�spk C "k�upk � .�C "/kpk:

5.5 Stable Manifold Theorem: Part 5

W s
loc.0/ isC 1

Lemma. (Differentiability) The functionh W Es.r/ ! Eu.r/ for which

W s
loc.0/ D

˚

vs C h.vs/
ˇ
ˇ vs 2 Es.r/

	

isC 1, andDh.0/ D 0.

Proof. Let q 2 W s
r be given. We will first come up with a candidate for a plane

that is tangent toW s
r atq, and then we will show that it really works.

For eachj 2 N and eachp 2 W s
r , define

C s;j .p/ WD ŒD.F j /.p/��1C s.˛/;

and let
C s;0.p/ WD C s.˛/:

By definition (and by the invertibility ofDF.v/ for all v 2 B.r/), C s;j .p/ is the
image of the stable cone under an invertible linear transformation. Note that

C s;1.p/ D ŒDF.p/��1C s.˛/ � C s.˛/ D C s;0.p/
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5. INVARIANT MANIFOLDS

by the (proof of the) lemma on linear invariance of the unstable cone. Similarly,

C s;2.p/ D ŒD.F 2/.p/��1C s.˛/ D ŒDF.F.p//DF.p/��1C s.˛/

D ŒDF.p/��1ŒDF.F.p//��1C s.˛/ D ŒDF.p/��1C s;1.F.p//

� ŒDF.p/��1C s.˛/ D C s;1.p/

and

C s;3.p/ D ŒD.F 3/.p/��1C s.˛/ D ŒDF.F 2.p//DF.F.p//DF.p/��1C s.˛/

D ŒDF.p/��1ŒDF.F.p//��1ŒDF.F 2.p//��1C s.˛/

D ŒDF.p/��1ŒDF.F.p//��1C s;1.F 2.p//

� ŒDF.p/��1ŒDF.F.p//��1C s.˛/ D C s;2.p/:

Recursively, we find that, in particular,

C s;0.q/ � C s;1.q/ � C s;2.q/ � C s;3.q/ � � � � :

The plane that we will show is the tangent plane toW s
r atq is the intersection

C s;1.q/ WD
1
\

jD0

C s;j .q/

of this nested sequence of “cones”.
First, we need to show that this intersectionis a plane. Suppose thatx 2

C s;j .q/. Thenx 2 C s.˛/, so

k�sDF.q/xk D kAss.q/�sx C Asu.q/�uxk
� kAss.q/kk�sxk C kAsu.q/kk�uxk � .�C "˛/k�sxk:

Repeating this sort of estimate, we find that

k�sD.F j /.q/xk D k�sDF.F j�1.q//DF.F j�2.q// � � �DF.q/xk
� .�C "˛/jk�sxk:

On the other hand, ify is also inC s;j .q/ and�sx D �sy, then repeated appli-
cations of the estimates in the lemma on linear invariance ofthe unstable cone
yield

k�uD.F j /.q/x � �uD.F j /.q/yk � .� � "=˛/jk�ux � �uyk:

SinceD.F j /.q/C s;j .q/ D C s.˛/, it must, therefore, be the case that

.� � "=˛/jk�ux � �uyk
.�C "˛/jk�sxk � 2˛:
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This implies that

k�ux � �uyk � 2˛

�
�C "˛

� � "=˛

�j

k�sxk: (5.11)

Letting j " 1 in (5.11), we see that for eachvs 2 Es there can be no more
than 1 pointx in C s;1.q/ satisfying �sx D vs. On the other hand, each
C s;j .q/ contains a plane of dimension dim.Es/ (namely, the preimage ofEs

underD.F j /.q/), so (since the set of planes of that dimension passing through
the origin is a compact set in the natural topology),C s;1.q/ contains a plane, as
well. This means thatC s;1.q/ is a planePq that is the graph of a linear function
Lq W Es ! Eu.

Before we show thatLq D Dh.q/, we make a few remarks.

(a) BecauseEs � C s;j .0/ for everyj 2 N, P0 D Es andL0 D 0.

(b) The estimate (5.11) shows that the size of the largest angle between two
vectors inC s;j .q/ having the same projection ontoEs goes to zero as
j " 1.

(c) Also, the estimates in the proof of the lemma on linear invariance of the
unstable cone show that the size of the minimal angle betweena vector in
C s;1.F j .q// and a vector outside ofC s;0.F j .q// is bounded away from
zero. Since

C s;j .q/ D ŒD.F j /.q/��1C s.˛/ D ŒD.F j /.q/��1C s;0.F j .q//

and

C s;jC1.q/ D ŒD.F jC1/.q/��1C s.˛/

D ŒD.F j /.q/��1ŒDF.F j .q//��1C s.˛/

D ŒD.F j /.q/��1C s;1.F j .q//;

this also means that the size of the minimal angle between a vector in
C s;jC1.q/ and a vector outside ofC s;j .q/ is bounded away from zero
(for fixedj ).

(d) Thus, sinceC s;jC1.q/ depends continuously onq,

Pq0 2 C s;jC1.q0/ � C s;j .q/

for a givenj if q0 is sufficiently close toq. This means thatPq depends
continuously onq.
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Now, we show thatDF.q/ D Lq. Let " > 0 be given. By remark(b) above,
we can choosej 2 N such that

k�uv � Lq�svk � "k�svk (5.12)

wheneverv 2 C s;j .q/. By remark(c) above, we know that we can choose"0 > 0

such that ifw 2 C s;jC1.q/ andkrk � "0kwk, thenw C r 2 C s;j .q/. Because
of the differentiability ofF�j�1, we can choose� > 0 such that

kF�j�1.F jC1.q/Cv/�q� ŒD.F�j�1/.F jC1.q//�vk � "0

kD.F jC1/.q/kkvk
(5.13)

wheneverkvk � �. Define the truncated stable cone

C s.˛; �/ WD C s.˛/ \ ��1
s Es.�/:

From the continuity ofF and thę -Lipschitz continuity ofh, we know that we
can pickı > 0 such that

F jC1.vs C h.vs// 2 fF jC1.q/g C C s.˛; �/: (5.14)

wheneverkvs � �sqk < ı.
Now, suppose thatv 2 C s.˛; �/. Then (assuming̨ � 1) we know that

kvk � �, so (5.13) tells us that

F�j�1.F jC1.q/C v/ D q C ŒD.F�j�1/.F jC1.q//�v C r

D q C ŒD.F jC1/.q/��1v C r
(5.15)

for somer satisfying

krk � "0

kD.F jC1/.q/kkvk:

Letw D ŒD.F jC1/.q/��1v. Sincev 2 C s.˛/,w 2 C s;jC1.q/. Also,

kwk D kŒD.F jC1/.q/��1vk � m.ŒD.F jC1/.q/��1/kvk

D kvk
kD.F jC1/.q/k ;

so krk � "0kwk. Thus, by the choice of"0, w C r 2 C s;j .q/ . Consequently,
(5.15) implies that

F�j�1.F jC1.q/C v/ 2 fqg C C s;j .q/:

Sincev was an arbitrary element ofC s.˛; �/, we have

F�j�1.fF jC1.q/g C C s.˛; �// � fqg C C s;j .q/: (5.16)
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Setqs WD �sq, and suppose thatvs 2 Es.r/ satisfieskvs � qsk � ı. By
(5.14),

F jC1.vs C h.vs// 2 fF jC1.q/g C C s.˛; �/:

This, the invertibility ofF , and (5.16) imply

vs C h.vs/ 2 fqg C C s;j .q/;

or, in other words,

vs C h.vs/ � qs � h.qs/ 2 C s;j .q/:

The estimate (5.12) then tells us that

kh.vs/ � h.qs/ � Lq.vs � qs/k � "kvs � qsk;

which proves thatDh.q/ D Lq (since" was arbitrary).
Remark(d) above implies thatDh.q/ depends continuously onq, soh 2 C 1.

Remark(a) above implies thatDh.0/ D 0.

5.6 Stable Manifold Theorem: Part 6

Higher Differentiability

Lemma. (Higher Differentiability) If F isC k , thenh isC k .

Proof. We’ve already seen that this holds fork D 1. We show that it is true for
all k by induction. Letk � 2, and assume that the lemma works fork�1. Define
a new mapH W R

n � R
n ! R

n � R
n by the formula

H

��

p

v

��

WD
�

F.p/

DF.p/v

�

:

SinceF isC k ,H is C k�1. Note that

H 2

��

p

v

��

D
�

F.F.p//

DF.F.p//DF.p/v

�

D
�

F 2.p/

D.F 2/.p/v

�

;

H 3

��

p

v

��

D
�

F.F 2.p//

DF.F 2.p//D.F 2/.p/v

�

D
�

F 3.p/

D.F 3/.p/v

�

;

and, in general,

H j

��

p

v

��

D
�

F j .p/

D.F j /.p/v

�

:
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Also,

DH

��

p

v

��

D

2

4

DF.p/ 0

D2F.p/v DF.p/

3

5 ;

so

DH

��

0

0

��

D

2

4

DF.0/ 0

0 DF.0/

3

5 ;

which is hyperbolic and invertible, sinceDF.0/ is. Applying the induction hy-
pothesis, we can conclude that the fixed point ofH at the origin (inR

n�R
n) has

a local stable manifoldW that isC k�1.
Fix q 2 W s

r , and note thatF j .q/ ! 0 asj " 1 and

Pq D
n

v 2 R
n
ˇ
ˇ
ˇ lim
j"1

D.F j /.q/v D 0
o

:

This means that

Pq D
(

v 2 R
n

ˇ
ˇ
ˇ
ˇ
ˇ

�

q

v

�

2 W

)

:

SinceW has aC k�1 dependence onq, so doesPq. Hence,h isC k .

Flows

Now we discuss how the Stable Manifold Theorem for maps implies the Stable
Manifold Theorem for flows. Givenf W � ! R

n satisfyingf .0/ D 0, let
F D '.1; �/, where' is the flow generated by the differential equation

Px D f .x/: (5.17)

If f isC k , so isF . Clearly,F is invertible andF.0/ D 0. Our earlier discussion
on differentiation with respect to initial conditions tells us that

d

dt
Dx'.t; x/ D Df .'.t; x//Dx'.t; x/

andDx'.0; x/ D I , whereDx represents differentiation with respect tox. Set-
ting

g.t/ D Dx'.t; x/jxD0 ;

this implies, in particular, that

d

dt
g.t/ D Df .0/g.t/

130



Stable Manifold Theorem: Part 6

andg.0/ D I , so

g.t/ D etDf .0/:

Settingt D 1, we see that

eDf.0/ D g.1/ D Dx'.1; x/jxD0 D DxF.x/jxD0 D DF.0/:

Thus,DF.0/ is invertible, and if (5.17) has a hyperbolic equilibrium atthe origin
thenDF.0/ is hyperbolic.

SinceF satisfies the hypotheses of the Stable Manifold Theorem for maps,
we know thatF has a local stable manifoldW s

r on some boxB.r/. Assume that
˛ < 1 and thatr is small enough that the vector field of (5.17) pointsinto B.r/

on C s.˛/ \ @B.r/. (See the estimates in Section 3.4.) The requirements for a
point to be inW s

r are no more restrictive then the requirements to be in the local
stable manifoldWs

r of the origin with respect to the flow, soWs
r � W s

r .
We claim that, in fact, these two sets are equal. Suppose theyare not. Then

there is a pointq 2 W s
r n Ws

r . Let x.t/ be the solution of (5.17) satisfying
x.0/ D q. Since limj"1 F j .q/ D 0 and, in a neighborhood of the origin, there
is a bound on the factor by whichx.t/ can grow in 1 unit of time, we know that
x.t/ ! 0 ast " 1. Among other things, this implies that

(a) x.t/ … W s
r for somet > 0, and

(b) x.t/ 2 W s
r for all t sufficiently large.

SinceW s
r is a closed set andx is continuous,(a) and(b) say that we can pickt0

to be the earliest time such thatx.t/ 2 W s
r for everyt � t0.

Now, consider the location ofx.t/ for t in the intervalŒt0 � 1; t0/. Since
x.0/ 2 W s

r , we know thatx.j / 2 W s
r for everyj 2 N. In particular, we can

chooset1 2 Œt0 � 1; t0/ such thatx.t1/ 2 W s
r . By definition oft0, we can choose

t2 2 .t1; t0/ such thatx.t2/ … W s
r . By the continuity ofx and the closedness of

W s
r , we can pickt3 to the be the last time beforet2 such thatx.t3/ 2 W s

r . By
definition ofW s

r , if t 2 Œt0 � 1; t0/ andx.t/ … W s
r , thenx.t/ … B.r/; hence,

x.t/ must leaveB.r/ at timet D t3. But this contradicts the fact that the vector
field points intoB.r/ atx.t3/, sincex.t3/ 2 C s.˛/ \ @B.r/. This contradiction
implies that no pointq 2 W s

r n Ws
r exists;i.e.,W s

r D Ws
r .

The exponential decay of solutions of the flow on the local stable manifold is
a consequence of the similar decay estimate for the map, along with the observa-
tion that, near0, there is a bound to the factor by which a solution can grown in
1 unit of time.
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5.7 Center Manifolds

Definition

Recall that for the linear differential equation

Px D Ax (5.18)

the corresponding invariant subspacesEu, Es, andEc had the characterizations

Eu D
[

c>0

n

x 2 R
n
ˇ
ˇ
ˇ lim
t#�1

je�ctetAxj D 0
o

;

Es D
[

c>0

n

x 2 R
n
ˇ
ˇ
ˇ lim
t"1

jectetAxj D 0
o

;

and
Ec D

\

c>0

n

x 2 R
n
ˇ
ˇ
ˇ lim
t#�1

jectetAxj D lim
t"1

je�ctetAxj D 0
o

:

The Stable Manifold Theorem tells us that for the nonlinear differential equation

Px D f .x/; (5.19)

with f .0/ D 0, the stable manifoldW s.0/ and the unstable manifoldW u.0/

have characterizations similar toEs andEu, respectively:

W s.0/ D
[

c>0

n

x 2 R
n
ˇ
ˇ
ˇ lim
t"1

ject'.t; x/j D 0
o

;

and
W u.0/ D

[

c>0

n

x 2 R
n
ˇ
ˇ
ˇ lim
t#�1

je�ct'.t; x/j D 0
o

;

where' is the flow generated by (5.19). (This was only verified when the equi-
librium point at the origin was hyperbolic, but a similar result holds in general.)

Is there a useful way to modify the characterization ofEc similarly to get
a characterization of acenter manifoldW c.0/? Not really. The main problem
is that the characterizations ofEs andEu only depend on thelocal behavior of
solutions when they are near the origin, but the characterization ofEc depends
on the behavior of solutions that are, possibly, far from0.

Still, the idea of a center manifold as some sort of nonlinearanalogue of
Ec.0/ is useful. Here’s one widely-used definition:

Definition. LetA D Df .0/. A center manifoldW c.0/ of the equilbrium point0
of (5.19) is an invariant manifold whose dimension equals the dimension of the
invariant subspaceEc of (5.18) and which is tangent toEc at the origin.
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Nonuniqueness

While the fact that stable and unstable manifolds are reallymanifolds is a theo-
rem (namely, the Stable Manifold Theorem), a center manifold is a manifoldby
definition. Also, note that we refer tothestable manifold andtheunstable mani-
fold, but we refer toa center manifold. This is because center manifolds are not
necessarily unique. An extremely simple example of nonuniqueness (commonly
credited to Kelley) is the planar system

(

Px D x2

Py D �y:

Clearly, Ec is thex-axis, and solving the system explicitly reveals that for any
constantc 2 R the curve

˚

.x; y/ 2 R
2
ˇ
ˇ x < 0 andy D ce1=x

	

[
˚

.x; 0/ 2 R
2
ˇ
ˇ x � 0

	

is a center manifold.

Existence

There is a Center Manifold Theorem just like there was a Stable Manifold The-
orem. However, the goal of the Center Manifold Theorem is notto characterize
a center manifold; that is done by the definition. The Center Manifold Theorem
asserts theexistenceof a center manifold.

We will not state this theorem precisely nor prove it, but we can give some
indication how the proof of existence of a center manifold might go. Suppose
that none of the eigenvalues ofDf .0/ have real part equal tǫ, where˛ is a
given real number. Then we can split the eigenvalues up into two sets: Those
with real part less than̨ and those with real part greater than˛. Let E� be the
vector space spanned by the generalized eigenvectors corresponding to the first
set of eigenvalues, and letEC be the vector space spanned by the generalized
eigenvectors corresponding to the second set of eigenvalues. If we cut offf so
that it is stays nearly linear throughoutR

n, then an analysis very much like that in
the proof of the Stable Manifold Theorem can be done to conclude that there are
invariant manifolds called thepseudo-stable manifoldand thepseudo-unstable
manifold that are tangent, respectively, toE� andEC at the origin. Solutions
x.t/ in the first manifold satisfye�˛tx.t/ ! 0 ast " 1, and solutions in the
second manifold satisfye�˛tx.t/ ! 0 ast # �1.

Now, suppose that̨ is chosen to be negative but larger than the real part
of the eigenvalues with negative real part. The corresponding pseudo-unstable
manifold is called acenter-unstable manifoldand is writtenW cu.0/. If, on the
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other hand, we choosę to be between zero and all the positive real parts of
eigenvalues, then the resulting pseudo-stable manifold iscalled acenter-stable
manifoldand is writtenW cs.0/. It turns out that

W c.0/ WD W cs.0/ \W cu.0/

is a center manifold.

Center Manifold as a Graph

Since a center manifoldW c.0/ is tangent toEc at the origin it can, at least locally,
be represented as the graph of a functionh W Ec ! Es ˚ Eu. Suppose, for
simplicity, that (5.19) can be rewritten in the form

(

Px D Ax C F.x; y/

Py D By CG.x; y/;
(5.20)

wherex 2 Ec , y 2 Es ˚ Eu, the eigenvalues ofA all have zero real part, all of
the eigenvalues ofB have nonzero real part, andF andG are higher order terms.
Then, for pointsx C y lying onW c.0/, y D h.x/. Inserting that into (5.20) and
using the chain rule, we get

Dh.x/ŒAx C F.x; h.x//� D Dh.x/ Px D Py D Bh.x/C G.x; h.x//:

Thus, if we define an operatorM by the formula

.M�/.x/ WD D�.x/ŒAx C F.x; �.x//�� B�.x/ � G.x; �.x//;

the functionh whose graph is the center manifold is a solution of the equation
Mh D 0.

5.8 Computing and Using Center Manifolds

Approximation

Recall that we projected our equation ontoEc and ontoEs˚Eu to get the system
(

Px D Ax C F.x; y/

Py D By CG.x; y/;
(5.21)

and that we were looking for a functionh W Ec ! Es˚Eu satisfying.Mh/ � 0,
where

.M�/.x/ WD D�.x/ŒAx C F.x; �.x//� � B�.x/ �G.x; �.x//:
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Except in the simplest of cases we have no hope of trying to getan explicit
formula forh, but because of the following theorem of Carr we can approximate
h to arbitrarily high orders.

Theorem. (Carr) Let� be aC 1 mapping of a neighborhood of the origin inRn

into R
n that satisfies�.0/ D 0 andD�.0/ D 0. Suppose that

.M�/.x/ D O.jxjq/

asx ! 0 for some constantq > 1. Then

jh.x/ � �.x/j D O.jxjq/

asx ! 0.

Stability

If we puty D h.x/ in the first equation in (5.20), we get thereduced equation

Px D Ax C F.x; h.x//; (5.22)

which describes the evolution of theEc coordinate of solutions on the center
manifold. Another theorem of Carr’s states that if all the eigenvalues ofDf .0/
are in the closed left half-plane, then the stability type ofthe origin as an equi-
librium solution of (5.21) (Lyapunov stable, asymptotically stable, or unstable)
matches the stability type of the origin as an equilibrium solution of (5.22).

These results of Carr are sometimes useful in computing the stability type of
the origin. Consider, for example, the following system:

(

Px D xy C ax3 C by2x

Py D �y C cx2 C dx2y;

wherex andy are real variables anda, b, c, andd are real parameters. We know
that there is a center manifold, tangent to thex-axis at the origin, that is (locally)
of the formy D h.x/. The reduced equation on the center manifold is

Px D xh.x/C ax3 C bŒh.x/�2x: (5.23)

To determine the stability of the origin in (5.23) (and, therefore, in the origi-
nal system) we need to approximateh. Therefore, we consider the operatorM

defined by

.M�/.x/ D �0.x/Œx�.x/C ax3 C b.�.x//2x�C �.x/ � cx2 � dx2�.x/;
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and seek polynomial� (satisfying�.0/ D �0.0/ D 0) for which the quantity
.M�/.x/ is of high order inx. By inspection, if�.x/ D cx2 then.M�/.x/ D
O.x4/, soh.x/ D cx2 CO.x4/, and (5.23) becomes

Px D .aC c/x3 CO.x5/:

Hence, the origin is asymptotically stable ifaCc < 0 and is unstable ifaCc > 0.
What about the borderline case whena C c D 0? Suppose thata C c D 0 and
let’s go back and try a different�, namely, one of the form�.x/ D cx2 C kx4.
Plugging this in, we find that.M�/.x/ D .k� cd/x4CO.x6/, so if we choose
k D cd then.M�/.x/ D O.x6/; thus,h.x/ D cx2C cdx4CO.x6/. Inserting
this in (5.23), we get

Px D .cd C bc2/x5 CO.x7/;

so the origin is asymptotically stable ifcd C bc2 < 0 (anda C c D 0) and is
unstable ifcd C bc2 > 0 (andaC c D 0).

What ifaCc D 0 andcdCbc2 D 0? Suppose that these two conditions hold,
and consider� of the form�.x/ D cx2C cdx4C kx6 for somek 2 R yet to be
determined. Calculating, we discover that.M�/.x/ D .k � b2c3/x6 CO.x8/,
so by choosingk D b2c3, we see thath.x/ D cx2 C cdx4 C b2c3x6 CO.x8/.
Inserting this in (5.23), we see that (ifaC c D 0 andcd C bc2 D 0)

Px D �b2c3x7 CO.x9/:

Hence, ifaC c D cd C bc2 D 0 andb2c3 > 0 then the origin is asymptotically
stable, and ifaC c D cd C bc2 D 0 andb2c3 < 0 then the origin is unstable.

It can be checked that in the remaining borderline caseaC c D cd C bc2 D
b2c3 D 0, h.x/ � cx2 and the reduced equation is simplyPx D 0. Hence, in this
case, the origin is Lyapunov stable, but not asymptoticallystable.

Bifurcation Theory

Bifurcation theory studies fundamental changes in the structure of the solutions
of a differential equation or a dynamical system in responseto change in a pa-
rameter. Consider the parametrized equation

Px D F.x; "/; (5.24)

wherex 2 R
n is a variable and" 2 R

p is a parameter. Suppose thatF.0; "/ D 0

for every", that the equilibrium solution atx D 0 is stable when" D 0, and
that we are interested in the possibility of persistent structures (e.g., equilibria or
periodic orbits) bifurcating out of the origin as" is made nonzero. This means
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that all the eigenvalues ofDxF.0; 0/ have nonpositive real part, so we can project
(5.24) onto complementary subspaces ofR

n and get the equivalent system
(

Pu D AuC f .u; v; "/

Pv D Bv C g.u; v; "/;

with the eigenvalues ofA lying on the imaginary axis and the eigenvalues ofB

lying in the open right half-plane. Since the parameter" does not depend on time,
we can append the equationP" D 0 to get the expanded system

8

<̂

ˆ
:

Pu D AuC f .u; v; "/

Pv D Bv C g.u; v; "/

P" D 0:

(5.25)

The Center Manifold Theorem asserts the existence of a center manifold for the
origin that is locally given by points.u; v; "/ satisfying an equation of the form

v D h.u; "/:

Furthermore, a theorem of Carr says that every solution.u.t/; v.t/; "/ of (5.25)
for which .u.0/; v.0/; "/ is sufficiently close to zero converges exponentially
quickly to a solution on the center manifold ast " 1. In particular, no per-
sistent structure near the origin lies off the center manifold of this expanded sys-
tem. Hence, it suffices to consider persistent structures for the lower-dimensional
equation

Pu D AuC f .u; h.u; "/; "/:
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Periodic Orbits

6.1 Poincaŕe-Bendixson Theorem

Definition. A periodic orbit of a continuous dynamical system' is a set of the
form

˚

'.t; p/
ˇ
ˇ t 2 Œ0; T �

	

for some timeT and pointp satisfying'.T; p/ D p. If this set is a singleton,
we say that the periodic orbit isdegenerate.

Theorem. (Poincaŕe-Bendixson)Every nonempty, compact!-limit set of aC 1

planar flow that does not contain an equilibrium point is a nondegenerate peri-
odic orbit.

We will prove this theorem by means of 4 lemmas. Throughout our discus-
sion, we will be referring to aC 1 planar flow' and the corresponding vector
field f .

Definition. If S is a line segment inR2 andp1; p2; : : : is a (possibly finite) se-
quence of points lying onS, then we say that this sequence ismonotone onS if
.pj � pj�1/ � .p2 � p1/ � 0 for everyj � 2.

Definition. A (possibly finite) sequencep1; p2; : : : of points on a trajectory (i.e.,
an orbit)T of ' is said to bemonotone onT if we can choose a pointp and
timest1 � t2 � � � � such that'.tj ; p/ D pj for eachj .

Definition. A transversalof ' is a line segmentS such thatf is not tangent to
S at any point ofS.

Lemma. If a (possibly finite) sequence of pointsp1; p2; : : : lies on the intersec-
tion of a transversalS and a trajectoryT , and the sequence is monotone onT ,
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6. PERIODIC ORBITS

then it is monotone onS.

Proof. Let p be a point onT . SinceS is closed andf is nowhere tangent
to S, the timest at which'.t; p/ 2 S form an increasing sequence (possibly
biinfinite). Consequently, if the lemma fails then there aretimest1 < t2 < t3 and
distinct pointspi D '.ti ; p/ 2 S, i 2 f1; 2; 3g, such that

fp1; p2; p3g D '.Œt1; t3�; p/ \ S

andp3 is betweenp1 andp2. Note that the union of the line segmentp1p2 from
p1 to p2 with the curve'.Œt1; t2�; p/ is a simple closed curve in the plane, so by
the Jordan Curve Theorem it has an “inside”I and an “outside”O. Assuming,
without loss of generality, thatf points into I all along the “interior” ofp1p2,
we get a picture something like:

p1

p2

I

O

b

b

Note that
I [ p1p2 [ '.Œt1; t2�; p/

is a positively invariant set, so, in particular, it contains'.Œt2; t3�; p/. But the fact
thatp3 is betweenp1 andp2 implies thatf .p3/ points intoI, so'.t3�"; p/ 2 O

for " small and positive. This contradiction implies that the lemma holds.

The proof of the next lemma uses something called aflow box. A flow box
is a (topological) box such thatf points into the box along one side, points out
of the box along the opposite side, and is tangent to the othertwo sides, and the
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Poincaré-Bendixson Theorem

restriction of' to the box is conjugate to unidirectional, constant-velocity flow.
The existence of a flow box around any regular point of' is a consequence of
theC r -rectification Theorem.

Lemma. No!-limit set intersects a transversal in more than one point.

Proof. Suppose that for some pointx and some transversalS, !.x/ intersectsS
at two distinct pointsp1 andp2. Sincep1 andp2 are on a transversal, they are
regular points, so we can choose disjoint subintervalsS1 andS2 of S containing,
respectively,p1 andp2, and, for some" > 0, define flow boxesB1 andB2 by

Bi WD
˚

'.t; x/
ˇ
ˇ t 2 Œ�"; "�; x 2 Si

	

:

Now, the fact thatp1; p2 2 !.x/ means that we can pick an increasing se-
quence of timest1; t2; : : : such that'.tj ; x/ 2 B1 if j is odd and'.tj ; x/ 2 B2

if j is even. In fact, because of the nature of the flow inB1 andB2, we can as-
sume that'.tj ; x/ 2 S for eachj . Although the sequence'.t1; x/; '.t2; x/; : : :
is monotone on the trajectoryT WD .x/, it is not monotone onS, contradicting
the previous lemma.

Definition. An !-limit point of a pointp is an element of!.p/.

Lemma. Every!-limit point of an!-limit point lies on a periodic orbit.

Proof. Suppose thatp 2 !.q/ andq 2 !.r/. If p is a singular point, then it
obviously lies on a (degenerate) periodic orbit, so supposethat p is a regular
point. PickS to be a transversal containingp in its “interior”. By putting a
suitable flow box aroundp, we see that, sincep 2 !.q/, the solution beginning
atq must repeatedly crossS. But q 2 !.r/ and!-limit sets are invariant, so the
solution beginning atq remains confined within!.r/. Since!.r/\S contains at
most one point, the solution beginning atq must repeatedly crossS at the same
point; i.e., q lies on a periodic orbit. Sincep 2 !.q/, p must lie on this same
periodic orbit.

Lemma. If an !-limit set!.x/ contains a nondegenerate periodic orbitP, then
!.x/ D P.

Proof. Fix q 2 P. Pick T > 0 such that'.T; q/ D q. Let " > 0 be given.
By continuous dependence, we can pickı > 0 such thatj'.t; y/ � '.t; q/j < "

whenevert 2 Œ0; 3T=2� andjy � qj < ı. Pick a transversalS of length less than
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ı with q in its “interior”, and create a flow box

B WD
˚

'.t; u/
ˇ
ˇ u 2 S; t 2 Œ��; ��

	

for some� 2 .0; T=2�. By continuity of'.T; �/, we know that we can pick a
subintervalS 0 of S that containsq and that satisfies'.T;S 0/ � B. Let tj be the
j th smallest element of

˚

t � 0
ˇ
ˇ '.t; x/ 2 S 0

	

:

BecauseS 0 is a transversal andq 2 !.x/, the tj are well-defined and increase
to infinity asj " 1. Also, by the lemma on monotonicity,j'.tj ; x/ � qj is a
decreasing function ofj .

Note that for eachj 2 N, '.T; '.tj ; x// 2 B, so, by construction ofS andB,
'.t; '.T; '.tj ; x/// 2 S for somet 2 Œ�T=2; T=2�. Pick such at . The lemma
on monotonicity implies that

'.t; '.T; '.tj ; x/// 2 S 0:

This, in turn, implies thatt C T C tj 2 ft1; t2; : : :g, so

tjC1 � tj � t C T � 3T=2: (6.1)

Now, let t � t1 be given. Thent 2 Œtj ; tjC1/ for somej � 1. For thisj ,

j'.t; x/ � '.t � tj ; q/j D j'.t � tj ; '.tj ; x// � '.t � tj ; q/j < ";

since, by (6.1),jt � tj j < jtjC1 � tj j < 3T=2 and since, because'.tj ; x/ 2 S 0 �
S, jq � '.tj ; x/j < ı.

Since" was arbitrary, we have shown that

lim
t"1

d.'.t; x/;P/ D 0:

Thus,P D !.x/, as was claimed.

Now, we get to the proof of the Poincaré-Bendixson Theorem itself. Suppose
!.x/ is compact and nonempty. Pickp 2 !.x/. SinceC.p/ is contained in
the compact set!.x/, we know!.p/ is nonempty, so we can pickq 2 !.p/.
Note thatq is an!-limit point of an!-limit point, so, by the third lemma,q lies
on a periodic orbitP. Since!.p/ is invariant,P � !.p/ � !.x/. If !.x/
contains no equilibrium point, thenP is nondegenerate, so, by the fourth lemma,
!.x/ D P.
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Lienard’s Equation

6.2 Lienard’s Equation

Suppose we have a simple electrical circuit with a resistor,an inductor, and a
capacitor as shown.

b b

b

C

RL

iC

iRiL

Kirchhoff’s current law tells us that

iL D iR D �iC ; (6.2)

and Kirchhoff’s voltage law tells us that the correspondingvoltage drops satisfy

VC D VL C VR: (6.3)

By definition of the capacitanceC ,

C
dVC

dt
D iC ; (6.4)

and by Faraday’s Law

L
diL

dt
D VL; (6.5)

whereL is the inductance of the inductor. We assume that the resistor behaves
nonlinearly and satisfies the generalized form of Ohm’s Law:

VR D F.iR/: (6.6)
143



6. PERIODIC ORBITS

Let x D iL andf .u/ WD F 0.u/. By (6.5),

Px D 1

L
VL;

so by (6.3), (6.4), (6.6), and (6.2)

Rx D 1

L

dVL

dt
D 1

L
. PVC � PVR/ D 1

L

�
1

C
iC � F 0.iR/

d iR

dt

�

D 1

L

�
1

C
.�x/� f .x/ Px

�

Hence,

Rx C 1

L
f .x/ PxC 1

LC
x D 0:

By rescalingf and t (or, equivalently, by choosing units judiciously), we get
Lienard’s Equation:

Rx C f .x/ Px C x D 0:

We will study Lienard’s Equation under the following assumptions onF and
f :

(i) F.0/ D 0;

(ii) f is Lipschitz continuous;

(iii) F is odd;

(iv) F.x/ ! 1 asx " 1;

(v) for someˇ > 0, F.ˇ/ D 0 andF is positive and increasing on.ˇ;1/;

(vi) for somę > 0, F.˛/ D 0 andF is negative on.0; ˛/.

Assumption(vi) corresponds to the existence of a region of negative resis-
tance. Apparently, there are semiconductors called “tunnel diodes” that behave
this way.

By settingy D PxCF.x/, we can rewrite Lienard’s Equation as the first-order
system

(

Px D y � F.x/
Py D �x:

(6.7)

Definition. A limit cyclefor a flow is a nondegenerate periodic orbitP that is the
!-limit set or the˛-limit set of some pointq … P.
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Theorem. (Lienard’s Theorem)The flow generated by(6.7) has at least one
limit cycle. If ˛ D ˇ then this limit cycle is the only nondegenerate periodic
orbit, and it is the!-limit set of all points other than the origin.

The significance of Lienard’s Theorem can be seen by comparing Lienard’s
Equation with the linear equation that would have resulted if we had assumed
a linear resistor. Such linear RCL circuits can have oscillations with arbitrary
amplitude. Lienard’s Theorem says that, under suitable hypotheses, a nonlinear
resistor selects oscillations of one particular amplitude.

We will prove the first half of Lienard’s Theorem by finding a compact, pos-
itively invariant region that does not contain an equilibrium point and then using
the Poincaré-Bendixson Theorem. Note that the origin is the only equilibrium
point of (6.7). Since

d

dt
.x2 C y2/ D 2.x Px C y Py/ D �2xF.x/;

assumption(vi) implies that for" small,R2 n B.0; "/ is positively invariant.
The nullclinesx D 0 andy D F.x/ of (6.7) (i.e. curves along which the

flow is either vertical or horizontal) separate the plane into four regionsA, B, C,
andD, and the general direction of flow in those regions is as shownbelow. Note
that away from the origin, the speed of trajectories is bounded below, so every
solution of (6.7) except.x; y/ D .0; 0/ passes throughA, B, C, andD in suc-
cession an infinite number of times as it circles around the origin in a clockwise
direction.

A

BC

D
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We claim that if a solution starts at a point.0; y0/ that is high enough up on
the positivey-axis, then the first point.0; Qy0/ it hits on the negativey-axis is
closer to the origin then.0; y0/ was. Assume, for the moment, that this claim is
true. LetS1 be the orbit segment connecting.0; y0/ to .0; Qy0/. Because of the
symmetry in (6.7) implied by Assumption(iii) , the set

S2 WD
˚

.x; y/ 2 R
2
ˇ
ˇ .�x;�y/ 2 S1

	

is also an orbit segment. Let

S3 WD
˚

.0; y/ 2 R
2
ˇ
ˇ � Qy0 < y < y0

	

;

S4 WD
˚

.0; y/ 2 R
2
ˇ
ˇ �y0 < y < Qy0

	

;

and let

S5 WD
˚

.x; y/ 2 R
2
ˇ
ˇ x2 C y2 D "2

	

;

for some small". Then it is not hard to see that[5iD1Si is the boundary of a
compact, positively invariant region that does not containan equilibrium point.

y0

� Qy0

Qy0
�y0

To verify the claim, we will use the functionR.x; y/ WD .x2 C y2/=2, and
show that ify0 is large enough (andQy0 is as defined above) then

R.0; y0/ > R.0; Qy0/:
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6.3 Lienard’s Theorem

Recall, that we’re going to estimate the change ofR.x; y/ WD .x2Cy2/=2 along
the orbit segment connecting.0; y0/ to .0; Qy0/. Notice that if the point.a; b/ and
the point.c; d/ lie on the same trajectory then

R.c; d/ �R.a; b/ D
Z .c;d/

.a;b/

dR:

(The integral is a line integral.) SincePR D �xF.x/, if y is a function ofx along
the orbit segment connecting.a; b/ to .c; d/, then

R.c; d/ �R.a; b/ D
Z c

a

PR
Px dx D

Z c

a

�xF.x/
y.x/ � F.x/ dx: (6.8)

If, on the other hand,x is a function ofy along the orbit segment connecting
.a; b/ to .c; d/, then

R.c; d/ �R.a; b/ D
Z d

b

PR
Py dy D

Z d

b

�x.y/F.x.y//
�x.y/ dy

D
Z d

b

F.x.y// dy: (6.9)

We will chop the orbit segment connecting.0; y0/ to .0; Qy0/ up into pieces and
use (6.8) and (6.9) to estimate the change�R in R along each piece and, there-
fore, along the whole orbit segment.

Let � D ˇ C 1, and let

B D sup
0�x��

jF.x/j:

Consider the region

R WD
˚

.x; y/ 2 R
2
ˇ
ˇ x 2 Œ0; ��; y 2 ŒB C �;1/

	

:

In R, ˇ
ˇ
ˇ
ˇ

dy

dx

ˇ
ˇ
ˇ
ˇ

D x

y � F.x/ � �

�
D 1I

hence, ify0 > B C 2� , then the corresponding trajectory must exitR through
its right boundary, say, at the point.�; y� /. Similarly, if Qy0 < �B � 2� , then
the trajectory it lies on must have last previously hit the linex D � at a point
.�; Qy� /. Now, assume that asy0 ! 1, Qy0 ! �1. (If not, then the claim clearly
holds.) Based on this assumption we know that we can pick a value fory0 and
a corresponding value forQy0 that are both larger thanB C 2� in absolute value,
and conclude that the orbit segment connecting them looks qualitatively like:
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.0; y0/

.0; Qy0/

.�; y�/

.�; Qy�/

We will estimate�R on the entire orbit segment from.0; y0/ to .0; Qy0/ by
considering separately, the orbit segment from.0; y0/ to .�; y� /, the segment
from .�; y� / to .�; Qy� /, and the segment from.�; Qy� / to .0; Qy0/.

First, consider the first segment. On this segment, they-coordinate is a func-
tion y.x/ of thex-coordinate. Thus,

jR.�; y� / �R.0; y0/j D
ˇ
ˇ
ˇ
ˇ

Z �

0

�xF.x/
y.x/� F.x/ dx

ˇ
ˇ
ˇ
ˇ

�
Z �

0

ˇ
ˇ
ˇ
ˇ

�xF.x/
y.x/� F.x/

ˇ
ˇ
ˇ
ˇ
dx �

Z �

0

�B

y0 � B � � dx

D �2B

y0 � B � � ! 0

as y0 ! 1. A similar estimate shows thatjR.0; Qy0/ � R.�; Qy� /j ! 0 as
y0 ! 1.

On the middle segment, we know that thex-coordinate is a functionx.y/ of
they-coordinatey. Hence,

R.�; Qy�/ �R.�; y�/ D
Z Qy�

y�

F.x.y// dy � �jy� � Qy� jF.�/ ! �1

asy0 ! 1.
Putting these three estimates together, we see that

R.0; Qy0/ �R.0; y0/ ! �1
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asy0 ! 1, so j Qy0j < jy0j if y0 is sufficiently large. This shows that the orbit
connecting these two points forms part of the boundary of a compact, positively
invariant set that surrounds (but omits) the origin. By the Poincaré-Bendixson
Theorem, there must be a limit cycle in this set.

Now for the second half of Lienard’s Theorem. We need to show that if
˛ D ˇ (i.e., if F has a unique positive zero) then the limit cycle whose existence
we’ve deduced is the only nondegenerate periodic orbit and it attracts all points
other than the origin. If we can show the uniqueness of the limit cycle, then the
fact that we can make our compact, positively invariant set as large as we want
and make the hole cut out of its center as small as we want will imply that it
attracts all points other than the origin. Note also, that our observations on the
general direction of the flow imply that any nondegenerate periodic orbit must
circle the origin in the clockwise direction.

So, suppose that̨ D ˇ and consider, as before, orbit segments that start on
the positivey-axis at a point.0; y0/ and end on the negativey-axis at a point
.0; Qy0/. Such orbit segments are “nested” and fill up the open right half-plane.
We need to show that only one of them satisfiesQy0 D �y0. In other words, we
claim that there is only one segment that gives

R.0; Qy0/ �R.0; y0/ D 0:

Now, if such a segment hits thex-axis onŒ0; ˇ�, thenx � ˇ all along that
segment, andF.x/ � 0 with equality only if .x; y/ D .ˇ; 0/. Let x.y/ be the
x-coordinate as a function ofy and observe that

R.0; Qy0/ �R.0; y0/ D
Z Qy0

y0

F.x.y// dy > 0: (6.10)

We claim that for values ofy0 generating orbits intersecting thex-axis in.ˇ;1/,
R.0; Qy0/ � R.0; y0/ is a strictly decreasing function ofy0. In combination with
(6.10) (and the fact thatR.0; Qy0/ � R.0; y0/ < 0 if y0 is sufficiently large), this
will finish the proof.

Consider 2 orbits (whose coordinates we denote.x; y/ and.X; Y /) that in-
tersect thex-axis in.ˇ;1/ and contain selected points as shown in the following
diagram.
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.0; Y0/

.0; y0/

.0; Qy0/

.0; QY0/

.ˇ; yˇ /

.ˇ; Qyˇ /

.ˇ; Yˇ /

.ˇ; QYˇ /

.�; yˇ /

.�; Qyˇ /

b

b

b

b

b

b

b

b

b

b

Note that

R.0; QY0/ �R.0; Y0/ D R.0; QY0/ �R.ˇ; QYˇ /
C R.ˇ; QYˇ / �R.�; Qyˇ /
C R.�; Qyˇ / �R.�; yˇ /
C R.�; yˇ / �R.ˇ; Yˇ /
C R.ˇ; Yˇ / �R.0; Y0/

DW �1 C�2 C�3 C�4 C�5:

(6.11)

Let X.Y / andx.y/ give, respectively, the first coordinate of a point on the
outer and inner orbit segments as a function of the second coordinate. Similarly,
let Y.X/ andy.x/ give the second coordinates as functions of the first coordi-
nates (on the segments where that’s possible). Estimating,we find that

�1 D
Z 0

ˇ

�XF.X/
Y.X/ � F.X/ dX <

Z 0

ˇ

�xF.x/
y.x/ � F.x/ dx D R.0; Qy0/ �R.ˇ; Qyˇ /;

(6.12)

�2 D
Z QYˇ

Qyˇ

F.X.Y // dY < 0; (6.13)

�3 D
Z Qyˇ

yˇ

F.X.Y // dY <

Z Qyˇ

yˇ

F.x.y// dy D R.ˇ; Qyˇ /�R.ˇ; yˇ /; (6.14)

�4 D
Z yˇ

Yˇ

F.X.Y // dY < 0; (6.15)
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and

�5 D
Z ˇ

0

�XF.X/
Y.X/ � F.X/ dX <

Z ˇ

0

�xF.x/
y.x/� F.x/ dx D R.ˇ; yˇ / �R.0; y0/:

(6.16)
By plugging, (6.12), (6.13), (6.14), (6.15), and (6.16) into (6.11), we see that

R.0; QY0/ �R.0; Y0/
< ŒR.0; Qy0/ �R.ˇ; Qyˇ /�C 0

C ŒR.ˇ; Qyˇ / �R.ˇ; yˇ /�C 0

C ŒR.ˇ; yˇ / �R.0; y0/�
D R.0; Qy0/ �R.0; y0/:

This gives the claimed monotonicity and completes the proof.
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