Section 8.2) 2, 4, 6, 8, 11, 15, 16

(2) \[A = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix} \]

(4) \[A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} \]

The eigenvalues of \(A \) are the zeros of \(f_A(\lambda) = \lambda^2 - 9\lambda + 14 = (\lambda - 7)(\lambda - 2) \), or \(\lambda_1 = 2 \) and \(\lambda_2 = 7 \). Both eigenvalues are positive, so the matrix \(A \) is positive definite.

(6) \[A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \]

Here we notice that \(\det(A) = -1 \). Since \(A \) is a 2 x 2 matrix, there are two eigenvalues. We also know that \(\det(A) = \lambda_1 \cdot \lambda_2 \). Since the product of the eigenvalues is negative, we know that one must be negative and one must be positive. Therefore, the matrix \(A \) is indefinite.

(8) Let \(\vec{v} \) be an eigenvector of the matrix \(A \) with associated eigenvalue \(\lambda \). Then, \(A^2 \vec{v} = A(\lambda \vec{v}) = \lambda^2 \vec{v} \). Therefore, the eigenvalues of the matrix \(A^2 \) are the squares of the eigenvalues of the matrix \(A \), and are all positive or zero. Therefore, the matrix \(A^2 \) is either positive definite or positive semidefinite. The matrix \(A^2 \) is positive definite if and only if zero is not an eigenvalue of \(A \), or \(A \) is invertible.

(11) If \(A \) is invertible and \(\lambda \) is an eigenvalue of \(A \) with associated eigenvector \(\vec{v} \), then \(A^{-1} \vec{v} = (1/\lambda) \vec{v} \). In other words, the eigenvalues of \(A^{-1} \) are the reciprocals of the eigenvalues of \(A \). Therefore, their eigenvalues have the same sign, so the matrices \(A \) and \(A^{-1} \) must have the same definiteness.

(15) From problem (4) we have \[A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} \]

with eigenvalues \(\lambda_1 = 2 \) and \(\lambda_2 = 7 \). By Fact 8.2.2 \(q(\vec{x}) = 2c_1^2 + 7c_2^2 \) = 1 where \(c_1 \) and \(c_2 \) are the coordinates of \(\vec{x} \) with respect to the orthonormal eigenbasis for \(A \). This equation
describes an ellipse on the c_1-c_2 plane. Let’s find the eigenvectors that define this new coordinate system.

\[E_2 = \ker \begin{bmatrix} -4 & -2 \\ -2 & -1 \end{bmatrix} = \sp \begin{bmatrix} 1 \\ -2 \end{bmatrix} \]

\[E_7 = \ker \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} = \sp \begin{bmatrix} 2 \\ 1 \end{bmatrix} \]

The curve will be an ellipse centered over the lines $y = -2x$ and $y = x/2$ and flattened along the line $y = -2x$.

(16) From problem (2) we have

\[A = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix} \]

The eigenvalues are the zeros of the equation $f_A(\lambda) = \lambda^2 - 1/4 = (\lambda - 1/2)(\lambda + 1/2)$. We have $\lambda_1 = 1/2$ and $\lambda_2 = -1/2$. Fact 8.2.2 tells us that $q(\vec{x}) = (c_1^2 - c_2^2)/2 = 1$ where c_1 and c_2 are the coordinates of \vec{x} with respect to the orthonormal eigenbasis for A. The equation $c_1^2 - c_2^2 = 2$ describes a hyperbola with intercepts on the c_1 axis. Let’s find the eigenvectors that define this new coordinate system.

\[E_{1/2} = \ker \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix} = \sp \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

\[E_{-1/2} = \ker \begin{bmatrix} -1/2 & -1/2 \\ -1/2 & -1/2 \end{bmatrix} = \sp \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]

The curve will be a hyperbola centered over the lines $y = x$ and $y = -x$ with intercepts on the line $y = x$.