(1)

\[A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -1 & -1 \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \]

Solutions to the linear system \(A\vec{x} = \vec{0} \) are of the form

\[\vec{x} = r \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \]

where \(r \) is any scalar. The \(\dim(\ker(A))=1 \).

To find a basis for \(\text{im}(A) \) we extract the pivot columns of \(A \).

\[\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \right\} \]

The \(\dim(\text{im}(A))=2 \).

(2a) The rank of a matrix \(A \) is the number of leading ones in \(\text{rref}(A) \).

(2b) We say that the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) form a basis of a subspace \(V \) of \(\mathbb{R}^m \) if they span \(V \) and are linearly independent.

(2c) Consider a subspace \(V \) of \(\mathbb{R}^5 \) with \(\dim(V)=3 \). We can find at most three linearly independent vectors in \(V \).

(2d) If \(A \) is a 6 x 5 matrix and \(\text{nullity}(A)=2 \), then the rank of \(A \) must be 3, by the Rank-Nullity Theorem.

(3a) FALSE: If \(V \) is a subspace of dimension 10, then any collection of more than 10 vectors does not necessarily span \(V \). For example, the collection of vectors \(\{\vec{v}, 2\vec{v}, 3\vec{v}, 4\vec{v}, 5\vec{v}, 6\vec{v}, 7\vec{v}, 8\vec{v}, 9\vec{v}, 10\vec{v}, 11\vec{v}\} \) where \(\vec{v} \in V \) spans a subspace of dimension 1 (a line). To span the subspace \(V \), a subset of 10 vectors from the collection must be linearly independent.

(3b) FALSE: If the columns of a 5 x 5 matrix \(A \) span \(\mathbb{R}^5 \), then the linear system \(A\vec{x} = \vec{0} \) has one unique solution.
(3c) TRUE: If A is the coefficient matrix for a linear system of 6 equations with 4 unknowns, and $\text{rank}(A) = 4$, then the system has either one solution or none.

(3d) FALSE: Let A be a 4 x 4 matrix. Consider a vector $\vec{b} \in \mathbb{R}^4$. If A^{-1} does not exist, then the linear system $A\vec{x} = \vec{b}$ has either no solution or infinite solutions.

(3e) FALSE: There do not exist 2 x 2 invertible matrices A, B and C such that the product BCA is not invertible. If A, B and C are invertible, then the matrix product $A^{-1}C^{-1}B^{-1}$ is the inverse of the product BCA.

(3f) FALSE: If T is a linear transformation from \mathbb{R}^5 to \mathbb{R}^7 defined as $T(\vec{x}) = A\vec{x}$, then $\ker(A)$ is a subspace of \mathbb{R}^5.

(3g) TRUE: If the columns of an $n \times m$ matrix A form a basis for the image of A, then $\ker(A) = \{\vec{0}\}$. If the columns of A form a basis for its image, then the dimension of the image must be m. By the Rank-Nullity Theorem, the dimension of the kernel must be $m - \text{dim}(\text{im}(A)) = m - m = 0$.

(3h) TRUE: The only 3 dimensional subspace of \mathbb{R}^3 is \mathbb{R}^3 itself. If we take any 3 linearly independent vectors in \mathbb{R}^3, they must span all of \mathbb{R}^3.

(4a) A linear transformation F from \mathbb{R}^2 to \mathbb{R}^2 is called a shear parallel to L if:

- $F(\vec{v}) = \vec{v}$ for all vectors \vec{v} on L, and
- $F(\vec{x}) - \vec{x}$ is parallel to L for all vectors $\vec{x} \in \mathbb{R}^2$.

(4b) We can use the determinant formula derived in class with $\det(S) = -1 - 1 = -2$.

$$ S = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \quad \quad S^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} $$

We check that

$$ SS^{-1} = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = I_2 $$

(4c) We use the fact that $S[\vec{x}]_B = \vec{x}$ and $[\vec{x}]_B = S^{-1} \vec{x}$.

$$ [\vec{e}_1]_B = S^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} $$
\[\vec{e}_2_B = S^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

(4d) \[B = S^{-1}AS = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \]

(4e) The linear transformation \(T \) is not purely a shear. Instead, it is a shear along the line spanned by \[\begin{bmatrix} -1 \\ 1 \end{bmatrix} \] followed by a dilation by a factor of 2. We see this by looking at the \(B \)-matrix of the transformation \(T \). Let \(\vec{v}_1 \) and \(\vec{v}_2 \) represent the basis vectors of the basis \(B \), so \([\vec{v}_1]_B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \([\vec{v}_2]_B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \). Then, \(T([\vec{v}_1]_B) = B[\vec{v}_1]_B = B\vec{e}_1 \) is the first column of the matrix \(B \), or \(2\vec{e}_1 = 2[\vec{v}_1]_B \). So, the vector \(\vec{v}_1 \) is mapped to itself and then dilated by a factor of 2. For any vector \([\vec{x}]_B \) in \(\mathbb{R}^2 \), we have

\[
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} - \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a + b \\ b \end{bmatrix} - \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix} = b \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

confirming that \(1/2 \) times the matrix \(B \) produces a shear along the line spanned by \(\vec{v}_1 \). We follow this shear with a dilation by a factor of 2.