Subadditivity and Symbolic Powers

JMM 2018: AMS Special Session on Commutative Algebra in All Characteristics

Daniel Smolkin
University of Utah
smolkin @ math.utah.edu
Motivation: Symbolic Powers

- Symbolic powers: $p^{(n)} := p^n R_p \cap R$.

Evidently, $p^n \subseteq p^{(n)}$. Question: how far is this from equality?

Answer [Swanson, '00]: for nice rings, $\forall p \exists h \forall n: p^{(hn)} \subseteq p^n$.

Answer [ELS '01, HH '02, Hara '05, MS '17]: If R is regular, then $h = \text{dim} R$ works for all p!

Question: can we find a uniform h that works for non-regular rings?
Symbolic powers: $p^{(n)} := p^n R_p \cap R$.
Evidently, $p^n \subseteq p^{(n)}$. Question: how far is this from equality?
Motivation: Symbolic Powers

- Symbolic powers: \(p^{(n)} := p^n R_p \cap R \).
- Evidently, \(p^n \subseteq p^{(n)} \). Question: how far is this from equality?
- Answer [Swanson, '00]: for nice rings, \(\forall p \exists h \forall n : p^{(hn)} \subseteq p^n \).
Motivation: Symbolic Powers

- Symbolic powers: $p^{(n)} := p^n R_p \cap R$.
- Evidently, $p^n \subseteq p^{(n)}$. Question: how far is this from equality?
- Answer [Swanson, '00]: for nice rings, $\forall p, \exists h \forall n : p^{(hn)} \subseteq p^n$.
- Answer [ELS '01, HH '02, Hara '05, MS '17]: If R is regular, then $h = \dim R$ works for all p!
Motivation: Symbolic Powers

- Symbolic powers: \(p^{(n)} := p^n R_p \cap R \).
- Evidently, \(p^n \subseteq p^{(n)} \). Question: how far is this from equality?
- Answer [Swanson, '00]: for nice rings, \(\forall p \exists h \forall n : p^{(hn)} \subseteq p^n \).
- Answer [ELS '01, HH '02, Hara '05, MS '17]: If \(R \) is regular, then \(h = \dim R \) works for all \(p \)!
- **Question**: can we find a uniform \(h \) that works for non-regular rings?
Motivation: Symbolic Powers

Sketch of ELS/Hara/MS proof: set \(d = \dim R \).

\[
\mathfrak{p}^{(dn)} \subseteq \tau(\mathfrak{p}^{(dn)}) = \tau\left(\left(\mathfrak{p}^{(dn)}\right)^{n/n}\right) \subseteq \tau\left(\left(\mathfrak{p}^{(dn)}\right)^{1/n}\right)^n \subseteq \mathfrak{p}^n
\]
Motivation: Symbolic Powers

Sketch of ELS/Hara/MS proof: set $d = \dim R$.

$$p^{(dn)} \subseteq \tau(p^{(dn)}) = \tau\left(\left(p^{(dn)}\right)^{n/n}\right) \subseteq \tau\left(\left(p^{(dn)}\right)^{1/n}\right)^n \subseteq p^n$$

(1): Because R is “F-regular”
Motivation: Symbolic Powers

Sketch of ELS/Hara/MS proof: set \(d = \text{dim} \, R \).

\[
p^{(dn)} \subseteq \tau(p^{(dn)}) = \tau \left(\left(p^{(dn)} \right)^{n/n} \right) \subseteq \tau \left(\left(p^{(dn)} \right)^{1/n} \right)^n \subseteq p^n
\]

(1): Because \(R \) is “\(F \)-regular”

(2): “Subadditivity”: need \(R \) regular!
Motivation: Symbolic Powers

Sketch of ELS/Hara/MS proof: set $d = \dim R$.

$$p^{(dn)} \subseteq \tau(p^{(dn)}) = \tau\left(\left(p^{(dn)}\right)^{n/n}\right) \subseteq \tau\left(\left(p^{(dn)}\right)^{1/n}\right)^n \subseteq p^n$$

(1): Because R is “F-regular”
(2): “Subadditivity”: need R regular!
(3): Holds generally (theory of integral closures + Skoda’s theorem)
Motivation: Symbolic Powers

Sketch of ELS/Hara/MS proof: set $d = \dim R$.

\[p^{(dn)} \subseteq \tau \left(p^{(dn)} \right) = \tau \left(\left(p^{(dn)} \right)^{n/n} \right) \subseteq \tau \left(\left(p^{(dn)} \right)^{1/n} \right)^n \subseteq p^n \]

(1): Because R is “F-regular”

(2): “Subadditivity”: need R regular!

(3): Holds generally (theory of integral closures + Skoda’s theorem)

Key idea: replace $\tau \left(p^{(dn)} \right)$ with an ideal so that (2) holds always, and hope (1) holds sometimes
R a f.g. k-algebra, domain, char(k) = $p > 0$.

- Frobenius: $F^e(x) = x^p$
Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, char$(k) = p > 0$.

- Frobenius: $F^e(x) = x^{p^e}$
- F^e_* := restriction of scalars along $F^e : R \to R$
R a f.g. k-algebra, domain, $\text{char}(k) = p > 0$.

- Frobenius: $F^e(x) = x^{p^e}$
- $F_*^e := \text{restriction of scalars along } F^e : R \rightarrow R$
- Concretely, $F_*^e R =$
Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, $\text{char}(k) = p > 0$.

- Frobenius: $F^e(x) = x^{p^e}$
- $F_*^e := \text{restriction of scalars along } F^e : R \to R$
- Concretely, $F_*^e R = \{ F_*^e x \mid x \in R \} \cong R$ as ab. group,
Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, $\text{char}(k) = p > 0$.

- Frobenius: $F^e(x) = x^p$
- F^e_* := restriction of scalars along $F^e : R \to R$
- Concretely, $F^e_* R = \{F^e_* x \mid x \in R\} \cong R$ as ab. group, but R-module structure given by

$$r \cdot F^e_* x = F^e_* r^p x$$
Interlude: Cartier Algebras and Test Ideas

R a f.g. k-algebra, domain, $\text{char}(k) = p > 0$.

- Frobenius: $F^e(x) = x^{p^e}$
- $F^e_\ast := \text{restriction of scalars along } F^e : R \to R$
- Concretely, $F^e_\ast R = \{ F^e_\ast x \mid x \in R \} \cong R$ as ab. group, but R-module structure given by
 \[r \cdot F^e_\ast x = F^e_\ast r^{p^e} x \]
- An R-linear map $\varphi : F^e_\ast R \to R$ satisfies
 \[\varphi(F^e_\ast (a + b)) = \varphi(F^e_\ast a) + \varphi(F^e_\ast b), \]
 \[\varphi(F^e_\ast r^{p^e} x) = \varphi(r F^e_\ast x) = r \varphi(F^e_\ast x) \]
Interlude: Cartier Algebras and Test Ideas

- $C_R := \bigcup_e \text{Hom}_R(F^e_* R, R)$.

- A Cartier algebra on R is a subset $D \subseteq C_R$.

- $D_e := D \cap \text{Hom}_R(F^e_* R, R)$.

- Test ideal of D: $\tau(R, D) :=$ the unique, minimal $J \neq 0$ such that $\phi(F^e_* J) \subseteq J$ for all e, $\phi \in D_e$.

 (It exists!)
Interlude: Cartier Algebras and Test Ideas

- $\mathcal{C}_R := \bigcup_e \text{Hom}_R(F^e_* R, R)$.
- A Cartier algebra on R is a subset $\mathcal{D} \subseteq \mathcal{C}_R$.

\[(\text{It exists!})\]

"J, ϕ are compatible"
• \(C_R := \bigcup_e \text{Hom}_R(F^e_\ast R, R). \)

• A Cartier algebra on \(R \) is a subset \(\mathcal{D} \subseteq C_R. \)

• \(\mathcal{D}_e := \mathcal{D} \cap \text{Hom}_R(F^e_\ast R, R) \)
• $\mathcal{C}_R := \bigcup_e \text{Hom}_R(F^e_* R, R)$.

• A Cartier algebra on R is a subset $\mathcal{D} \subseteq \mathcal{C}_R$.

• $\mathcal{D}_e := \mathcal{D} \cap \text{Hom}_R(F^e_* R, R)$

• Test ideal of \mathcal{D}: $\tau(R, \mathcal{D}) :=$ the unique, minimal $J \neq 0$ such that $\varphi(F^e_* J) \subseteq J \forall e, \forall \varphi \in \mathcal{D}_e$.

(It exists!)
• $C_R := \bigcup_e \text{Hom}_R(F^e_*, R)$.

• A Cartier algebra on R is a subset $\mathcal{D} \subseteq C_R$.

• $\mathcal{D}_e := \mathcal{D} \cap \text{Hom}_R(F^e_*, R)$

• Test ideal of \mathcal{D}: $\tau(R, \mathcal{D}) :=$ the unique, minimal $J \neq 0$ such that $\varphi(F^e_*J) \subseteq J \forall e, \forall \varphi \in \mathcal{D}_e$.
 • (It exists!)
• $\mathcal{C}_R := \bigcup_e \text{Hom}_R(F^e_\ast R, R)$.

• A Cartier algebra on R is a subset $\mathcal{D} \subseteq \mathcal{C}_R$.

• $\mathcal{D}_e := \mathcal{D} \cap \text{Hom}_R(F^e_\ast R, R)$

• Test ideal of \mathcal{D}: $\tau(R, \mathcal{D}) :=$ the unique, minimal $J \neq 0$ such that $\varphi(F^e_\ast J) \subseteq J$ $\forall e$, $\forall \varphi \in \mathcal{D}_e$.

 • (It exists!)

 • “J, φ are compatible”
Interlude: Cartier Algebras and Test Ideas

Multiplying a Cart. Alg. by an ideal

- Given \mathcal{D}, $\alpha_i \subseteq R$, construct

$$\mathcal{D}\alpha_1 \cdots \alpha_n := \bigcup_{e} \left\{ \varphi \left(F_e^* x \cdot - \right) \mid \varphi \in \mathcal{D}_e, x \in \prod_i \alpha_i^{p_e-1} \right\}$$
Multiplying a Cart. Alg. by an ideal

- Given \mathcal{D}, $a_i \subseteq R$, construct

$$\mathcal{D}a_1 \cdots a_n := \bigcup_{e} \left\{ \varphi (F^e_x \cdot -) \mid \varphi \in \mathcal{D}_e, x \in \prod_i a_i^{p_i-1} \right\}$$

- $\tau (R, a_1 \cdots a_n) := \tau (R, C_R a_1 \cdots a_n)$
The diagonal cartier algebra

- Subadditivity: if R regular, then $\tau(R, ab) \subseteq \tau(R, a)\tau(R, b)$.
The diagonal cartier algebra

- Subadditivity: if R regular, then $\tau(R, ab) \subseteq \tau(R, a)\tau(R, b)$.
- Question: is there a version that works for non-regular rings?
Subadditivity: if R regular, then $\tau(R, ab) \subseteq \tau(R, a)\tau(R, b)$.

Question: is there a version that works for non-regular rings?

Answer 1 (Takagi, ‘07): if R is equidimensional,

$$\text{jac}(R)\tau(R, ab) \subseteq \tau(R, a)\tau(R, b)$$
The diagonal Cartier algebra

- Subadditivity: if R regular, then $\tau(R, ab) \subseteq \tau(R, a)\tau(R, b)$.
- Question: is there a version that works for non-regular rings?
- Answer 1 (Takagi, '07): if R is equidimensional,
 \[\text{Jac}(R)\tau(R, ab) \subseteq \tau(R, a)\tau(R, b) \]
- (Doesn't work for our purposes if $p^{(dn)} \not\subseteq \text{Jac}(R)$)
The diagonal cartier algebra

- Subadditivity: if R regular, then $\tau(R, ab) \subseteq \tau(R, a)\tau(R, b)$.
- Question: is there a version that works for non-regular rings?
- Answer 1 (Takagi, ’07): if R is equidimensional,
 \[\text{jac}(R)\tau(R, ab) \subseteq \tau(R, a)\tau(R, b) \]
 - (Doesn't work for our purposes if $p^{(dn)} \not\subseteq \text{jac}(R)$)
- Answer 2: Use Cartier algebras!
The diagonal cartier algebra

- Subadditivity: if R regular, then $\tau(R, ab) \subseteq \tau(R, a)\tau(R, b)$.
- Question: is there a version that works for non-regular rings?
- Answer 1 (Takagi, ‘07): if R is equidimensional,

 \[
 \text{jac}(R) \tau(R, ab) \subseteq \tau(R, a)\tau(R, b)
 \]

 - (Doesn't work for our purposes if $p^{(dn)} \not\subseteq \text{jac}(R)$)
- Answer 2: Use Cartier algebras!
- For any $n \in \mathbb{N}$, define $\mathcal{D}(n)_e$ as the set of $\varphi : F_\ast^e R \rightarrow R$ such that

\[
F_\ast^e R \otimes n \xrightarrow{\exists \varphi} R \otimes n
\]

\[
F_\ast^e \mu \downarrow \quad \mu
\]

\[
F_\ast^e R \xrightarrow{\varphi} R
\]
The diagonal cartier algebra

Theorem (S.)

\[\tau(R, \mathcal{D}(n) a_1 \cdots a_n) \subseteq \tau(R, a_1) \cdots \tau(R, a_n) \]

Proof.
The diagonal cartier algebra

Theorem (S.)

\[\tau(R, \mathcal{D}(n)a_1 \cdots a_n) \subseteq \tau(R, a_1) \cdots \tau(R, a_n) \]

Proof.

\[\text{Hom}_{R \otimes n}(F_e^e R \otimes^n, R \otimes^n) \cong \text{Hom}_R(F_e^e R, R)^{\otimes n} \]

\[\Rightarrow \tau(R^{\otimes n}, a_1 \otimes \cdots \otimes a_n) \subseteq \tau(R, a_1) \otimes \cdots \otimes \tau(R, a_n) \]
The diagonal cartier algebra

Theorem (S.)

\[\tau(R, \mathcal{D}(n)a_1 \cdots a_n) \subseteq \tau(R, a_1) \cdots \tau(R, a_n) \]

Proof.

\[\text{Hom}_{R^\otimes n}(F^e_* R^\otimes n, R^\otimes n) \cong \text{Hom}_R(F^e_* R, R)^\otimes n \]

\[\Rightarrow \tau(R^\otimes n, a_1 \otimes \cdots \otimes a_n) \subseteq \tau(R, a_1) \otimes \cdots \otimes \tau(R, a_n) \]

\[\Rightarrow \mu(\tau(R^\otimes n, a_1 \otimes \cdots \otimes a_n)) \subseteq \mu(\tau(R, a_1) \otimes \cdots \otimes \tau(R, a_n)) \]

\[= \tau(R, a_1) \cdots \tau(R, a_n) \]
The diagonal cartier algebra

Theorem (S.)

\[\tau(R, \mathcal{D}(n)a_1 \cdots a_n) \subseteq \tau(R, a_1) \cdots \tau(R, a_n) \]

Proof.

\[\text{Hom}_{R \otimes^n}(F^e R \otimes^n, R \otimes^n) \cong \text{Hom}_R(F^e R, R) \otimes^n \]

\[\Rightarrow \tau(R \otimes^n, a_1 \otimes \cdots \otimes a_n) \subseteq \tau(R, a_1) \otimes \cdots \otimes \tau(R, a_n) \]

\[\Rightarrow \mu(\tau(R \otimes^n, a_1 \otimes \cdots \otimes a_n)) \subseteq \mu(\tau(R, a_1) \otimes \cdots \otimes \tau(R, a_n)) \]

\[= \tau(R, a_1) \cdots \tau(R, a_n) \]

The set \(\mathcal{D}(n) \) is constructed specifically so that

\[\tau(R, \mathcal{D}(n)a_1 \cdots a_n) \subseteq \mu(\tau(R \otimes^n, a_1 \otimes \cdots \otimes a_n)) \]
Question: When is $p^{(dn)} \subseteq \tau(R, \mathcal{D}(n)p^{(dn)})$?

Just need $\mathcal{D}(n)$ to be large (F-regular)

Def: R is diagonally F-regular if $\mathcal{D}(n)$ is F-regular for all n.

Question: Are there any non-regular rings that are diagonally F-regular?

Theorem (Carvajal-Rojas, S.)
Let k be a field of characteristic p. Then the Segre product $k[x_0, \ldots, x_r] \# k[y_0, \ldots, y_s]$ is diagonally F-regular. Thus, $p^{(r+s+1)n} \subseteq p$ for all $p \in \text{Spec}(k[x_0, \ldots, x_r] \# k[y_0, \ldots, y_s])$.
Upshot: Symbolic Powers and Diagonal F-regularity

- Question: When is $p^{(dn)} \subseteq \tau(R, \mathcal{D}(n)p^{(dn)})$?
- Just need $\mathcal{D}(n)$ to be large (F-regular)
Question: When is $p^{(dn)} \subseteq \tau(R, \mathcal{D}(n)p^{(dn)})$?

Just need $\mathcal{D}(n)$ to be large (F-regular)

Def: R is diagonally F-regular if $\mathcal{D}(n)$ is F-regular for all n.

Theorem (Carvajal-Rojas, S.)

Let k be a field of characteristic p. Then the Segre product $k[x_0, \ldots, x_r] \# k[y_0, \ldots, y_s]$ is diagonally F-regular. Thus, $p^{(r+s+1)n} \subseteq p$ for all $p \in \text{Spec}(k[x_0, \ldots, x_r] \# k[y_0, \ldots, y_s])$.

Upshot: Symbolic Powers and Diagonal F-regularity

- Question: When is $p^{(dn)} \subseteq \tau(R, \mathcal{D}(n)p^{(dn)})$?
- Just need $\mathcal{D}(n)$ to be large (F-regular)
- **Def:** R is diagonally F-regular if $\mathcal{D}(n)$ is F-regular for all n.
- Question: Are there any non-regular rings that are diagonally F-regular?
Question: When is $p^{(dn)} \subseteq \tau(R, D(n)p^{(dn)})$?

Just need $D(n)$ to be large (F-regular)

Def: R is diagonally F-regular if $D(n)$ is F-regular for all n.

Question: Are there any non-regular rings that are diagonally F-regular?

Theorem (Carvajal-Rojas, S.)

Let k be a field of characteristic p. Then the Segre product $k[x_0, \ldots, x_r] \# k[y_0, \ldots, y_s]$ is diagonally F-regular.
Upshot: Symbolic Powers and Diagonal F-regularity

- Question: When is $p^{(dn)} \subseteq \tau(R, \mathcal{D}(n)p^{(dn)})$?
- Just need $\mathcal{D}(n)$ to be large (F-regular)
- **Def:** R is diagonally F-regular if $\mathcal{D}(n)$ is F-regular for all n.
- Question: Are there any non-regular rings that are diagonally F-regular?

Theorem (Carvajal-Rojas, S.)

Let k be a field of characteristic p. Then the Segre product $k[x_0, \ldots, x_r] \# k[y_0, \ldots, y_s]$ is diagonally F-regular.

Thus, $p^{((r+s+1)n)} \subseteq p$ for all $p \in \text{Spec}(k[x_0, \ldots, x_r] \# k[y_0, \ldots, y_s])$.
Computing $D(n)$

- For affine torics, computing $D(n)$ is equivalent to solving a combinatorial problem.
Computing $\mathcal{D}(n)$

- For affine torics, computing $\mathcal{D}(n)$ is equivalent to solving a combinatorial problem.
- affine toric $R \subseteq k[x_1, \ldots, x_d] \leftrightarrow$ cones $C \subseteq \mathbb{R}^d$
Computing $\mathcal{D}(n)$

- For affine torics, computing $\mathcal{D}(n)$ is equivalent to solving a combinatorial problem.
- Affine toric $R \subseteq k[x_1, \ldots, x_d] \leftrightarrow$ cones $C \subseteq \mathbb{R}^d$
- $a \in \frac{1}{p^e} \mathbb{Z}^d \cap P_R \leftrightarrow$ gens $\pi_a \in \text{Hom}_R(F_e^* R, R)$
Computing $\mathcal{D}(n)$

- For affine torics, computing $\mathcal{D}(n)$ is equivalent to solving a combinatorial problem.
- affine toric $R \subseteq k[x_1, \ldots, x_d] \leftrightarrow$ cones $C \subseteq \mathbb{R}^d$
- $a \in \frac{1}{p^e}\mathbb{Z}^d \cap P_R \leftrightarrow$ gens $\pi_a \in \text{Hom}_R(F^e_* R, R)$

Theorem (S.)

If R affine toric, then $\mathcal{D}(2)_e$ is generated by

$$\{\pi_a \mid P_R \cap (a - P_R) \text{ is "big"} \}$$

$\mathcal{Z} \subseteq \mathbb{R}^d$ is big if $\forall v \in \frac{1}{p^e}\mathbb{Z}^d \exists s \in \mathbb{Z} : v + s \in \mathcal{Z}$
Example

\[R = k[x, y, u, v]/(xy - uv) \cong k[x, y, u, xyu^{-1}] \]