For this homework, we assume all rings are commutative, associative and with multiplicative identity. We assume that all homomorphisms send 1 to 1.

1. Show that a ring \(R \) is Noetherian if and only if for every ideal \(I \subseteq R \), there exists elements \(x_1, \ldots, x_n \in I \) such that \(I = (x_1, \ldots, x_n) \). We talked through this in class on Wednesday April 6th, but now write down the details carefully.

2. Suppose that \(R \) is a unique factorization domain. Prove that every irreducible element in \(R \) is prime.

3. Prove or disprove, every subring of a PID is a PID.

4. Same question as #3, but with UFD.

5. Show that \(1 - i \) is irreducible in \(\mathbb{Z}[i] \).

6. Prove that every non-zero prime ideal in a PID is maximal.

7. Suppose that \(\phi : R \to S \) is a surjective ring homomorphism. Suppose that \(x \in R \) is an irreducible element. Is it true that \(\phi(x) \) is also irreducible? Prove it or give a counter-example.

8. Show that a non-constant polynomial from \(\mathbb{Z}[x] \) that is irreducible (as an element of \(\mathbb{Z}[x] \)) is primitive.

9. Show that \(x^4 + 1 \in \mathbb{Q}[x] \) is irreducible. But \(x^4 + 1 \in \mathbb{R}[x] \) is reducible (not irreducible).

10. Explicitly construct a field with 49 elements.

11. Determine which of the following polynomials below are irreducible over \(\mathbb{Q} \) (ie, irreducible elements of \(\mathbb{Q}[x] \)).

(a) \(x^5 + 9x^4 + 12x^2 + 6 \)
(b) \(x^4 + x + 1 \)
(c) \(x^4 + 3x^2 + 3 \)
(d) \(x^5 + 5x^2 + 1 \)
(e) \(\frac{7}{2}x^5 + \frac{9}{2}x^4 + 15x^3 + \frac{3}{2}x^2 + 6x + \frac{3}{14} \)