1) Let $K \subseteq L$ be two number fields. Let $A \subseteq B$ the corresponding rings of integers. Note that $A = B \cap K$. Let $L = \mathbb{Q}(\zeta)$ be the cyclotomic field where $\zeta = e^{\frac{2\pi i}{9}}$. Its ring of integers is $B = \mathbb{Z}[\zeta]$. Let $K = L \cap \mathbb{R}$, and let A be the ring of integers in K. Prove that $A = \mathbb{Z}[x]$ where

$$x = \zeta + \bar{\zeta}.$$

Derive the cubic equation for x, using $\cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)$. Compute the discriminant of A. Prove that $2A$ is a prime ideal. Combine this and Corollary 1 on page 58 of the book to prove that A is a PID.

2) Let A be a Dedekind domain with 2 maximal ideals P and Q. Prove that A is a principal ideal domain. Hint: apply Chinese Reminder Theorem to A/P^2Q to construct a generator of P.
