3. Metric Spaces

Definition. A function $\rho : X \times X \to \mathbb{R}_+$ is a **metric** if and only if it satisfies these conditions:

a) $\rho(x, y) = 0$ if and only if $x = y$ (otherwise $\rho(x, y) > 0$),

b) $\rho(x, y) = \rho(y, x)$,

c) $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$ for all x, y, z in X.

Remark. For two sets X, Y, the product set $X \times Y$ is the set of all pairs $\{(x, y); x \in X, y \in y\}$. Suppose I is a set, and to each $i \in I$ we have associated a set X_i. Then the product $\times_{i \in I} X_i$ is the set of all functions $\phi : I \to \bigcup_{i \in I} X_i$ such that $\phi(i) \in X_i$ for all i.

Examples 3A, 3B, 3C. Generalize 3C to \mathbb{R}^n. This is the **Euclidean metric**.

Problem: **13.** Look at example 3.1. Let L^∞ be the set of all bounded sequences of real numbers. For s in L^∞, let $|s|_\infty$ be the least upper bound of the set $|s_n|$. Define $\rho_\infty(s, s') = |s - s'|_\infty$. Show that ρ is a metric.

Look at 3.2. Generalize this to the set L^1 of absolutely convergent series.

Definition. Let (X, ρ) be a metric space. The sets

$$D_r(a) = \{x \in X; \rho(a, x) < r\}$$

$$D_r[a] = \{x \in X; \rho(a, x) \leq r\}$$

$$S_r(a) = \{x \in X; \rho(a, x) = r\}$$

are the **open ball**, **closed ball**, **sphere** with center a and radius r.

Problem 14. For \mathbb{R}^2, describe these sets for each of the metrics 3C,3.1,3.2.

Proposition. Let (X, ρ) be a metric space. The sets $D_r(a)$ form a base for a topology on X, called the **metric topology**.

Problem **15. Prove the above proposition. Show that the sets $D_r[a]$, $S_r(a)$ are closed in this topology.

Definition. Let A be a subset of a metric space (X, ρ). Then $(A, \rho|_A)$ is also a metric space. We say that A is a **subspace** of X.
Problem 16.

a). Let \(A = [0, 1] \cup [2, 3] = \{ x \in \mathbb{R}; 0 \leq x \leq 1 \text{ or } 2 \leq x \leq 3 \} \) as a subspace of \(\mathbb{R} \). Show that the subset \([0,1]\) is open in \(A \).

b). Let \(A = (0, 1) \cup (1, 2) = \{ x \in \mathbb{R}; 0 < x < 1 \text{ or } 1 < x < 2 \} \) as a subspace of \(\mathbb{R} \). Show that the subset \((0,1)\) is closed in \(A \).

Problem 17. Let \(C \) be the Cantor set, considered as a subspace of \(\mathbb{R} \). Let \(a \) be in \(C \), and \(\epsilon > 0 \). Show that there is an \(r < \epsilon \) such that \(D_r(a) = D_r[a] \); that is, the ball \(D_r(a) \) is both open and closed.

Definition. A subset \(A \) of a metric space \((X, \rho) \) is **bounded** if there is a number \(M \) such that \(\rho(x, y) \leq M \) for all \(x, y \) in \(A \). The least upper bound of numbers \(M \) satisfying this condition is the **diameter** of \(A \).

Problem 18. Show that a set \(U \) in a metric space \((X, \rho) \) is open if and only if it satisfies the condition: for every \(a \in U \), there is an \(r > 0 \) such that \(D_r(a) \subseteq U \).

Definition. Let \(X \) be a set, and \(\rho_1 \) and \(\rho_2 \) two metrics on \(X \). The metrics are said to be **equivalent** if they determine the same topology on \(X \).

Problem 19.

a) Show that two metrics on a set \(X \) are equivalent if and only if for every \(a \in X \), every ball centered at \(a \) in one metric contains a ball centered at \(a \) in the other metric.

b). Can you prove (or disprove) this: Two metrics on a set \(X \) are equivalent if and only if every ball in one metric contains a ball in the other metric.

Problem 20. 3.29 and/or:

\(L_1 \) is a subset of \(L_\infty \) since every absolutely convergent sequence is bounded. So \(L_1 \) has its natural topology, as defined above, and also that as a subspace of \(L_\infty \). These topologies are not equivalent. In both cases, one topology is finer than the other; which is it?

4. **Subspaces**

Definition. Let \(X \) be a topological space, and \(A \) a subset of \(X \). The **relative topology** on \(A \) is given by \(\{ A \cap U; U \text{ open in } X \} \) as the set of open sets.

Problem 21. Show that if \((X, \rho) \) is a metric space and \(A \) a subset of \(X \), then the topology induced by the metric \(\rho|_A \) is the relative topology.

Problem 22. 4E and 4F.

5. **Position of a Point in a Set**

Definition. Let \(x \) be a point in a subset \(A \) of a topological space \(X \).
x is an **interior point** of A if there is an open set U with $x \in U \subset A$. The set of interior points of A is denoted intA.

x is an **exterior point** of A if there is an open set U with $x \in U \subset X - A$. The set of exterior points of A is denoted extA.

x is a **boundary point** of A if every open set U with $x \in U$ intersects both X and $X - A$. The set of interior points of A is denoted ∂A.

Definition x is a **limit point** of a set A if every open set containing x intersects $A - \{x\}$.

x is a **isolated point** of A if there is an open set U such that $U \cup A = \{x\}$.

Show that a set is closed if and only if it contains all its limit points. This will help in some of the following problems.

Problem **23.** Show that, for any set A, X is the disjoint union of intA, extA, ∂A. Show that intA and extA are open, and ∂A is closed.

Problem 24. a) Show that intA is the maximal open set contained in A, and is the union of all open sets contained in A. b) Show that int$(X - A) = $ extA.

Definition. Given a set A in a topological space X, the **closure** of A, denoted \overline{A} is the intersection of all closed sets containing A.

Show that, for A a subset of a topological space $\overline{A} = \text{int}A \cup \partial A$.

Definition. Let A be a subset of a topological space X. A is **everywhere dense** if its closure is X. A set is **nowhere dense** if its closure has empty interior.

Note that this is different from the definition in the text, and conforms to common usage.

Problem **25.** A is everywhere dense in X if and only if A intersects every open set. A closed set is nowhere dense if and only if it is equal to its boundary.

Definition. A topological space is said to be **Hausdorff** if this condition is satisfied; for $x \neq y$ there are disjoint open sets U and V with $x \in U$ and $y \in V$.

Problem 26. Of the examples considered so far, which are not Hausdorff?

Remark Two things to note; the definition of ”nowhere dense” in the text is not the common definition, so stay with the one in the supplementary notes. At the end of those notes, I introduced the concept of ”Hausdorff”. This is a regularity assumption which I shall assume from now on; so if I say ”topological” space, I mean a Hausdorff space. All metric spaces are Hausdorff.

6. Maps
This section contains some concepts and notation with which it is necessary to become familiar.

Definition A mapping f of a set X to a set Y (written $f : X \to Y$) is a rule which assigns to each element of X exactly one element of Y. Other words: map, function.

Now, the word “rule” is an intuitive notion which can be eliminated by the following completely set-theoretic definition. Essentially, we identify the mapping f with its graph. To make this clear, let us call, for any $x \in X$, the subset $\{x\} \times Y$ of $X \times Y$ the section σ_x, and for any $y \in Y$, the subset $X \times \{y\}$ of $X \times Y$ the section σ_y.

Definition A mapping f of a set X to a set Y is a subset G_f of $X \times Y$ with this property: for every $x \in X$, $G_f \cap \sigma_x$ consists of just one point. We refer to that point as $(x, f(x))$.

The identity $I : X \to X$ is defined by $G_I = \{(x, x) \in X \times X; x \in X\}$.

Now, we elaborate:

Definition Given a mapping f of a set X to a set Y, the range of f is the set of $y \in Y$ such that $G_f \cap \sigma_y$ is nonempty. f is surjective (or onto) if its range is Y. f is injective if, for all y in the range of f, $G_f \cap \sigma_y$ consists of just one point.

Definition. Given $f : X \to Y$ and $g : Y \to Z$, we define the composition $h = g \circ f$ by the subset $G_h = \{(x, g(f(x)); x \in X\}$ of $X \times Z$.

Definition. If $f : X \to Y$ is both injective and surjective, then G_f, considered as a subset of $Y \times X$, defines a mapping from Y to X called the inverse of f, and denoted f^{-1}. We say that f (and of course, also f^{-1}) is an invertible mapping.

Verify that $f \circ f^{-1} = I$. $f^{-1} \circ f = I$.

Now that we are done with those formalities, we’ll use the “rule” conception of a function.

Definition. Let $f : X \to Y$. For $A \subset X$, $f(A) = \{f(x); x \in A\}$. For $B \subset Y$, $f^{-1}(B) = \{x \in X; f(x) \in B\}$.

7. Continuous Maps

Of course, the whole point of topology is to be able to discuss, with good foundation, the concepts of continuity and convergence. We are finally getting there.

Definition. Let $f : X \to Y$, where X and Y are topological spaces. We say that f is continuous if, for every open set U in Y, $f^{-1}(U)$ is open in X.

Problem: 27. (7A). $f : X \to Y$ is continuous if and only if for every closed set C in Y, $f^{-1}(C)$ is closed in X.
Problem: **28. Do 7.2

**29. Let \(\mathcal{F} \) be a collection of maps \(f : X \to Y \) be any map, with \(Y \) a topological space. Describe the coarsest topology on \(X \) for which the collection \(\mathcal{F} \) consists of continuous maps.

Remark. If \(X \) is a topological space and we take \(\mathcal{F} \) as the collection of real-valued functions, then the topology defined by Problem 28 is coarser than the given topology. If the space is Hausdorff and the topologies coincide, then \(X \) is said to be a **regular** topological space. We’ll return to this notion.

Problem: 30. (7E). The composition of continuous maps is continuous.

Problem: 31. Do 7.6

Problem: 32. Do 7.10 and 7.13

Problem: 32. Let \(f : X \to Y \) be a mapping, with \(X \) a topological space and \(Y \) a metric space with metric \(\rho \). Show that \(f \) is continuous if and only if, for every \(a \in Y \) and \(r > 0 \), \(f^{-1}(D_r(a)) \) is open in \(X \).

Local Continuity

Definition. Let \(f : X \to Y \), where \(X \) and \(Y \) are topological spaces. For \(a \in X \), we say that \(f \) is **continuous at** \(a \) if, for every open set \(U \) containing \(f(a) \), \(f^{-1}(U) \) contains an open set containing \(a \). (Verify that this is the same as the definition in the text).

Problem: 33. (7I) \(f \) is continuous if and only if it is continuous at every point of \(X \).

Problem: 34. The above definition is equivalent to the \(\epsilon - \delta \) definition. Precisely, let \(f : X \to Y \), where \(X \) and \(Y \) are metric spaces. Then, for \(a \in X \), \(f \) is continuous at \(a \) if and only if, for every \(\epsilon > 0 \),
\[
\rho_X(x, a) < \delta \quad \text{implies} \quad \rho_Y(f(x), f(a)) < \epsilon .
\]

Problem: 35. For \(X \) a topological space, let \(C(X) \) be the set of real-valued functions on \(X \). Show that for \(f, g \in C(X) \), \(f + g, fg, \min(f, g), \max(f, g) \) are all in \(C(X) \). Also, if \(g(a) \neq 0 \), \(f/g \) is continuous at \(a \).

Definition. Let \(X \) and \(Y \) be topological spaces, and \(f : X \to Y \) am invertible mapping. \(f \) is a **homeomorphism** if both \(f \) and \(f^{-1} \) are continuous.

Equivalently, an invertible map \(f : X \to Y \) is a homeomorphism if and only if \(f \) is continuous and, for every open set \(U \subset C \), \(f(U) \) is open in \(Y \).

Problem: **36. Show that, for \(S^2 = S_1((0,0,0) \) in \(\mathbb{R}^3 \), and \(P \) any point in \(S^2 \), that \(S^2 - \{ P \} \) is homeomorphic to \(\mathbb{R}^2 \).**