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CALCULUS I, Second Semester

VI. Transcendental Functions

6.1 Inverse Functions

The functions ex and lnx are inverses to each other in the sense that the two statements

y = ex , x = ln y

are equivalent. In general, two functions f, g are said to be inverse to each other when the
statements

(6.1) y = f(x) , x = g(y)

are equivalent for x in the domain of f , and y in the domain of g. Often we write g = f−1 and
f = g−1 to express this relation. Another way of giving this citerion is

f(g(x)) = x g(f(x)) = x .

Example 6.1. Find the inverse function for f(x) = 3x− 7. We write y = 3x− 7 and solve for x
as a function of y:

(6.2) x =
y + 7

3
.

The equations y = 3x − 7 and x = (y + 7)/3 are equivalent for all x and y, so (6.2) gives us the
formula for the inverse of f : f−1(y) = (y + 7)/3. Since it is customary to use the variable x for
the independent variable, we should write:

f−1(x) =
x + 7

3
.

Example 6.2. Find the inverse function for

f(x) =
x

x + 1
.

We let y = x/(x + 1), and solve for x in terms of y:

(6.3) yx + y = x so that y = x(1− y) ,

so that
x =

y

1− y
.

Thus
f−1(x) =

x

1− x
.

Notice that -1 is excluded from the domain of f , and 1 is excluded from the domain of f−1. In
fact, we see that these substitutions in equations (6.3) lead to contradictions.
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We have to be careful, in discussing inverses, to clearly indicate the domain and range, otherwise
we have ambiguities and make mistakes.

Example 6.3. x2 and
√

x appear to be inverses since (
√

x)2 = x. But since the symbol √ gives the
positive root,

√
x2 = |x| which is not x when x is negative.This ambiguity is clarified by specifying

the domains of the functions. So, for x ≥ 0,
√

x is the inverse of x2, but for x ≤ 0, −
√

x is the
inverse of x2. Finally,

√
x is only defined for nonnegative numbers.

We illustrate this graphically in figure 6.1.
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In the first graph each horizontal line y = y0 intersects the graph in two points for y0 > 0, and in
no points for y0 < 0. So the domain of an inverse function can contain no negative numbers, and
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for positive numbers, there are 2 choices of inverse, one for the function x2, x nonnegative, and
the other for x2, x nonpositive.

In general, this provides a graphical criterion for a function to have an inverse:

Proposition 6.1. Let y = f(x) for a function f defined on the interval a ≤ x ≤ b. Let f(a) =
α, f(b) = β. If, for each γ between α and β the line y = γ intersects the graph in one and only
one point, then f has an inverse defined on the interval between α and β.

For if (c, γ) is the point of intersection of the graph with the line y = γ, define f−1(γ) = c.

For a continuous function, we know, from the Intermediate Value Theorem of Chapter 2, that each
such line y = γ intersects the graph in at least one point. Thus for continuous functions, we can
restate the proposition as

Proposition 6.2. Let y = f(x) for a continuous function f defined on the interval a ≤ x ≤ b. Let
f(a) = α, f(b) = β. If the condition

(6.4) x1 6= x2 implies f(x1) 6= f(x2)

then f has an inverse defined on the interval between α and β.

For a differentiable function, it follows from Rolle’s theorem of chapter that condition (6.4) holds
if f ′(x) 6= 0 for all a ≤ x ≤ b.

Proposition 6.3. Let y = f(x) for a differentiable function f defined on the interval a ≤ x ≤ b.
Let f(a) = α, f(b) = β. If f ′(x) 6= 0 in the interval, then f has an inverse defined on the interval
between α and β.

Example 6.4. Let f(x) = x2 − x. Find the domains for which f has an inverse, and find the
inverse function.

First, differentiate: f ′(x) = 2x − 1. Thus f ′(x) < 0 for x < 1/2, and f ′(x) > 0 for x > 1/2, so
we should be able to find inverses for f on each of the domains (−∞, 1/2), (1/2,∞).To find the
formula for the inverse, let y = x2 − x and solve for x in terms of y. To do this, we write the
equation as x2 − x− y = 0, and use the quadratic formula:

x =
−1±

√
1 + 4y

2
.

How convenient: we’re looking for two possible inverses, and here we have two choices. Notice first
that because of the square root sign, the domain of y must be y ≥ −1/4. We conclude that, in the
domains x ≥ 1/2, y ≥ −1/4 the following statements are equivalent:

y = x2 − x , x =
−1 +

√
1 + 4y

2

and thus the inverse to f(x) = x2 − x on this domain is

(6.5) f−1(x) = (−1 +
√

1 + 4x)/2 .
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Similarly, in the domains x ≤ 1/2, y ≥ −1/4 the following statements are equivalent:

y = x2 − x , x =
−1−

√
1 + 4y

2

and thus the inverse to f(x) = x2 − x on this domain is f−1(x) = (−1−
√

1− 4x)/2.

Example 6.5. Let

f(x) =
ex − e−x

2
.

This function is called the hyperbolic sine. The hyperbolic sine has an inverse function defined for
all real numbers. First of all f ′(x) = (ex + e−x)/2 > 0 for all x, so f has an inverse function.
Secondly,

lim
x→−∞

f(x) = −∞ and lim
x→∞

f(x) = ∞

so the range of f , and thus the domain of its inverse, is all real numbers. We now find a formula
for the inverse function. Let y = f−1(x), so that

x = f(y) =
ey − e−y

2
.

Multiply both sides of the equation by 2ex, giving

2xey = e2y − 1 or e2y − 2xey − 1 = 0 .

Using the quadratic formula we find

ey =
2x±

√
4x2 + 4
2

= x±
√

x2 + 1 .

Since this is positive for all x, we must have ey = x +
√

x2 + 1, and finally

y = ln(x +
√

x2 + 1)

is the inverse hyperbolic sine.

Proposition 6.4. Suppose that f and g are inverse to each other in their respective domains. Let
y = g(x). Then

(6.6) g′(x) = 1/f ′(y) .

To see this, differentiate the relations x = f(y), y = g(x) implicitly with respect to x:

1 = f ′(y)
dy

dx
,

dy

dx
= g′(x) ,

so
g′(x) =

dy

dx
=

1
f ′(y)

.
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Example 6.6. Let us illustrate this proposition with the exponential and logarithmic functions.
Recall that y = lnx is defined as being equivalent to x = ey. Differentiate that equation with
respect to x implicitly .

1 = ey dy

dx
so that

dy

dx
=

1
ey

.

Since ey = x, we obtain the formula for the derivative of the logarithm:

d

dx
lnx =

1
x

.

Example 6.7. Let y = f−1(x) be the function defined on the domain x ≥ 2 which is inverse to
f(x) = x2 − x (recall example 6.4). We find the derivative of f−1(x) .First, write:

y = f−1(x) is equivalent to x = y2 − y .

Differentiate implicitly:

1 = 2y
dy

dx
− dy

dx
so that

dy

dx
=

1
2y − 1

.

or

(6.7)
d

dx
f−1(x) =

1
2f−1(x)− 1

.

Since we have an explicit formula for f−1(x) (see equation (6.5)), we may substitute that in (6.7)
to obtain

d

dx
f−1(x) =

1√
1 + 4x

.

Of course, in the above example the inverse functions are explicit, and so we can make a substitution
for f−1(x) on the left side of (6.7), but that may not always be the case.

Example 6.8. Suppose that g is the inverse to the function f(x) = x2 − 4x− 44 for x > 2. Find
g′(1).

Note, since the parabola has its vertex where x = 2, the function f does have an inverse in x > 2.
Let y = g(x). Since g is inverse to f , x = f(y) = y2 − 4y − 44 and f ′(y) = 2y − 4, so

g′(x) =
1

2y − 4
.

To calculate g′(1) we find the value of y corresponding to x = 1 : 1 = y2−4y−44 has the solutions
−9, 5. Since f is restricted to values greater than 2, we must have g(1) = 5. Now f ′(y) = 2y − 4,
so

g′(1) =
1

f ′(5)
=

1
2(5)− 4

=
1
6

.

Problems 6.1

1. Find the function inverse to
f(x) =

2x + 1
x− 3

.
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2. Find the inverse function, and its domain, for

f(x) =
ex + e−x

2
.

If possible, find a formula for f−1.

3. Find g′((e + e−1)/2) where g is the inverse to the function of problem 2.

4. Show that f(x) = x3 + 3x + 1 has an inverse. Find

d

dx
f−1(x)

∣∣
x=1

.

5. Let f(x) = x lnx for x > 1. Show that f has an inverse g. Noting that f(e2) = 2e2, find g′(2e2).

6.2 Inverse Trigonometric Functions

In this section we use the ideas of the preceding section to define inverses for the trigonometric
functions, and calculate their derivatives. Since the trigonometric functions are periodic, we will
have to restrict the domain of definition in order to obtain a well-defined inverse.

We start with the tangent function. Recall that tanx is strictly increasing on the interval (π/2, π/2)
and takes every value between −∞ and ∞, and then repeats itself in intervals of length π. Thus,
if we restrict the domain of the tangent to the interval (π/2, π/2), it has an inverse there, defined
for all real numbers.

Definition 6.1. The function y = arctanx is defined on the interval (−∞,∞), taking values in
−π/2, π/2] .by the condition x = tan y.

The inverse tangent (or arctangent) is sometimes denoted by y = tan−1(x). See figure 6.2 for the
graph of the inverse tangent.
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Figure 6.2
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Proposition 6.5.
d

dx
arctanx =

1
(1 + x2)

,

∫
1

(1 + x2)
dx = arctan x + C

To see this, we start with the equation x = tan y that defines y as the arctangent of x. We get:

1 = sec2 y
dy

dx
.

Now, since sec2 y = tan2 y + 1, we can replace sec2 y by x2 + 1, obtaining

1 = (x2 + 1)
dy

dx
or

dy

dx
=

1
x2 + 1

,

which is just the first equation. The second is a restatement in terms of integrals.

Similarly, we define y = arcsinx by the condition x = sin y. However, since the sine function is
periodic, the equation sin y = x has many solutions for x between −1 and 1. But, if we insist
that y be between −π/2 and π/2, there is only one solution. So, to pick a definite inverse for
the sine function, we specify that its domain is the interval [−1, 1], and its range (set of values) is
[−π/2, π/2]. Then, with this specification, it is true that the equation sin y = x has one and only
one solution. That solution we call the inverse sine function, denoted arcsinx or sin−1 x.

Definition 6.2. The function y = arcsinx is defined on the interval (−1, 1), taking values in
−π/2, π/2] .by the condition x = sin y. See figure 6.3 for a graph of y = arcsinx.
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Proposition 6.6.
d

dx
arcsinx =

1√
1− x2

,

∫
1√

1− x2
dx = arcsinx + C

Differentiate x = sin y implicitly:

1 = cos y
dy

dx
.
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Now, since sin2 y + cos2 y = 1, writing this as x2 + cos2 y = 1, and thus replace cos y by
√

1− x2:

1 =
√

1− x2
dy

dx
or

dy

dx
=

1√
1− x2

.

We took the positive root for, in the chosen domain for arcsinx, it is increasing.

Turning to the cosine, since cos(−x) = cos(x), it is not possible to define an inverse if we take
the domain of cos to be any interval about 0. However, we note that since the cosine function is
strictly decreasing between 0 and π, we can define an inverse on the interval [−1, 1] taking values
between 0 and π: this is the inverse cosine, denoted arccos x. (See figure 6.4 for the graph).

Definition 6.3. The function y = arccos x is defined on the interval (−1, 1), taking values in
(0, π], .by the condition x = cos y.

Proposition 6.7.
d

dx
arccos x = − 1√

1− x2
,

∫
1√

1− x2
dx = − arccos x + C

The verification is the same as that of proposition 6.6, except that this time, since the arccosine is
decreasing, we take the negative square root. Note that, for any acute angle α, its complementary
angle is π/2− α, thus sinα = cos(π/2− α). Letting x = sin α, so that α = arcsinx , this tells us
that arccos x = π/2−α = π/2−arcsinx, explaining the coincidence in the formulas of propositions
6.6 and 6.7.

Example 6.9. Find ∫
xdx

x4 + 1
.

Make the substitution u = x2, du = 2xdx. This gives us

1
2

∫
du

u2 + 1
=

1
2

arctanu + C =
1
2

arctan(x2) + C .

Example 6.10. Find, for any constant a: ∫
dx

x2 + a2
.

Make the substitution x = au, dx = adu. The integral becomes∫
adu

a2u2 + a2
=

1
a

∫
du

u2 + 1
=

1
a

arctanu + C =
1
a

arctan(
u

a
) + C .

Problems 6.2

1. tan(arccos x) =

2.
1
x2
− tan2(arccos x) =
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3. Show that arcsinx + arccos x is constant.

4. Differentiate : g(x) = arcsin(lnx) .

5. Differentiate : y = arccos
√

x

6. Find the equation of the line tangent to the curve y = arctan x at the point (
√

3, π/3).

7. Find all points at which the tangent line to the curve y = arcsinx has slope 4.

8. What is the maximum value of the derivative of f(x) = arccos x?

9.

∫
xdx√
1− x4

=

10. Show that f(x) = sec x has an inverse in the interval (0, π/2). The inverse is denoted y =
sec−1 x (called the arcsecant). Find the formula for the derivative of the arcsecant.

11.

∫
dx√

a2 − x2
=

12. The curve y =
1√

1 + x2
1 ≤ x ≤

√
3

is rotated around the x-axis. Find the volume of the enclosed solid.

6.3 First Order Linear Differential Equations

Definition 6.4. A first order linear differential equation is a differential equation of the type

(6.8)
dy

dx
+ P (x)y = Q(x) .

It is said to be homogeneous if the function Q(x) is 0.

The equation is of “first order” since it involves only the first derivative, and linear since the
equation expresses the first derivative of the unknown function y as a linear function of y.

If P and Q are constant functions we can easily solve the differential equation by separation of
variables.

Example 6.11. To solve, say
dy

dx
= 2y − 3

we rewrite the equation in the form (2y−3)−1dy = dx. These differentials integrate to the relation

1
2

ln(2y − 3) = x + C or
√

2y − 3 = Kex .

130



Squaring both sides and soving for y, we ge the general solution

(6.9) y =
Ke2x + 3

2
.

For example, to find the solution with initial value y(0) = 5, we first solve for K:

5 =
Ke2(0) + 3

2
,

so K = 7, and the particular solution is y = (7e2x + 3)/2.

The acute reader will object that the integral of (2y − 3)−1dy is (1/2) ln |2y − 3|, and if we follow
through with this, this seems to lead to the alternative solution

(6.10) y =
3−Ke2x

2
.

However, this is the same as (6.9), just with a different choice for the constant K. If we use (6.10)
with the same initial conditions y(0) = 5, we find this K = −7, giving the same final answer. For
this reason it is often the case that the absolute value is ignored.

Now, we note that the homogeneous equation (the case Q(x) = 0) is separable:

Example 6.12. Solve y′ − 2xy = 0, y(2) = 1.

We separate the variables: y−1dy = 2xdx and integrate:

ln y = x2 + C .

Substituting the initial condition allows us to solve for C : ln 1 = 4 + C, so C = −4. Thus the
particular solution is given by

ln y = x2 − 4

which exponentiates to
y = ex2−4 .

Now, to solve the general equation, we make a crucial observation:

Proposition 6.8. Given the differential equation, y′ + P (x)y = Q(x), suppose that v solves the
homogeneous equation: v′ + Pv = 0. Then, making the substitution y = uv leads to a simple
integration for the unknown function u.

Let’s make the substitution in the given equation. Since y′ = uv′ + u′v, we have

uv′ + u′v + Puv = Q , or u′v + u(v′ + Pv) = Q , or u′v = Q ,

since v′ + Pv = 0. But then u′ = Qv−1, and we find u by integration.

This leads to a method for solving the general first order differential equation

y′ + Py = Q .
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1. Find a solution v of the corresponding homogeneous equation.
2. Make the substitution y = uv, leading to an integration to find the new unknown function

u.

Example 6.13. Solve
dy

dx
=

y + 1
x

, y(1) = 2 .

The homogeneous equation is y′ − x−1y = 0. which has the solution y = Kx. Try y = ux in
the given equation. This leas us to the equation u′x = x−1, or u′ = x−2, which has the solution
u = −x−1 + C. Thus the general solution is

y = ux = (
−1
x

+ C)x = −1 + Cx .

Now solve for C using the initial conditions y(1) = 2: 2 = −1 + C, so C = 3 and the solution is
y = 3x− 1.

Now the solution of the homogeneous equation y′ + Py = 0 is e−
∫

Pdx. With the substitution
y = ue−

∫
Pdx, the terms involving an undifferentiated u disappear precisely because e−

∫
Pdx solves

the homogeneous equation. For this reason e−
∫

Pdx is called an integrating factor. This method is
called that of variation of parameters; the idea being to first find the general solution of an easier
equation, and then trying that in the original equation, but with the constant replaced by a new
unknown function. This method is very productive in solving very general types of differential
equations.

Example 6.14. Solve y′ − 2xy = x, y(0) = 2 . First, as in example 6.12, solve the homogeneous
equation y′ − xy = 0, leading to

y = Kex2
.

Now substitute y = uex2
into the original equation to obtain

u′ex2
= x or u′ = xe−x2

.

This integrates to

u = −1
2
e−x2

+ C ,

so that our general solution is y = uex2
with this u:

y =
(
− 1

2
e−x2

+ C
)
ex2

= −1
2

+ Cex2
.

Notice that the constant function −1/2 (found by taking C = 0) is a solution of the differential
equation. However, this doesn’t satisfy our initial conditions: y(0) = 2. Those give us C = 2, so
the solution we seek is

y = −1
2

+ 2ex2
.

Example 6.15. Find the general solution to xy′ − y = x2.
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We first must put this in the form (6.8):

dy

dx
+

y

x
= x .

The solution to the homogeneous equation is y = Kx. So, we try y = ux, and obtain the equation

u′x = x ,

which has the general solution u = x + C. Thus the general solution to the original problem is

y = ux = (x + C)x = x2 + Cx .

Remember the steps to solve the equation y′ + P (x)y = Q(x):

1. Solve the homogeneous equation y′ + P (x)y = 0, obtaining y = e−
∫

Pdx.

2. Try the solution y = ue−
∫

Pdx, leading to the equation for u : u′e−
∫

Pdx = Q(x), or u′ =

Q(x)e
∫

Pdx.

Solve for u, and put that solution in the equation y = ue−
∫

Pdx. If an initial value is specified,
now solve for the unknown constant.

This can, of course, be summarized in a formula:

Proposition 6.9 The general solution of the first order linear differential equation

y′ + Py = Q

is
y = e−

∫
Pdx( ∫

Qe
∫

Pdxdx + C) .

We strongly advise students to remember the method rather than this formula.

A useful fact to know about linear first order equations is that if we know one particular solution,
then we only have to solve the homogeneous equation to find all solutions.

Proposition 6.10. Suppose that yp is a solution of the differential equation y′ + Py = Q. Then
every solution is of the form

y = yp + Ke−
∫

Pdx ;

that is, every solution is of the form yp + yh, where yh is a solution of the homogeneous equation.

For suppose that y is any solution of the equation: y′ + Py = Q. Then (y − yp)′ + P (y − yp) =
(y + Py)− (yp + Pyp) = Q−Q = 0 so solves the homogeneous equation.

Example 6.16. Find the solution of the equation y′ − 2y + 5 = 0 such that y(0) = 1.
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Now the constant function yp = 5/2 solves the equation, since y′p = 0. The general solution of
the homogeneous equation is y = Ke2x, so the general solution of the original equation is of the
form y = (5/2) + Ke2x. Substituting y = 1, x = 0, we find 1 = 5/2 + K, so K = −3/2, and the
particular solution we want is

y =
1
2
(5− 3e2x) .

Example 6.17. A body falling through a fluid is subject to the force due to gravity as well as
a resistance, due to the viscosity of the fluid, proportional to its velocity. (Here we are assuming
that the density of the body is much higher than the density of the fluid, and that its shape is
not relevant). Let x(t) represent the distance fallen at time t and v(t) its velocity. The hypothesis
leads to the equation

dv

dt
= −kv + g

for some constant k (g is the acceleration of gravity), called the coefficient of resistance of the
fluid. Notice that the constant v = g/k is a solution of the equation. This is called the “free fall
velocity”, and for any falling body it will accelerate until it reaches this maximum velocity. By
proposition 6.10, the general solution is

v(t) =
g

k
+ Ke−kt ,

for some constant k.

Example 6.18. Suppose a heavy spherical object is throuwn from an airplane at 10000 meters,
and that the coefficient of resistance of air is k = 0.05. Find the velocity as a function of time.
What is the free fall velocity? Approximately how long does it take to reach the ground?

Here g = 9.8 m/sec2, so the free fall velocity is vp = 9.8/(.05) = 196 meters/sec. The general
solution to the problem is

v(t) = 196 + Ke−(.02)t .

At t = 0, v = 0, so 0 = 196 + K, and our solution is

v(t) = 196(1− e−(.02)t) .

To answer the last question, we have to find distance fallen as a function of time, by integrating
the above:

x(t) = 196(t + 50e−(.02)t) + C .

At t = 0, x = 0; this gives C = −196(50), and the solution for our particular object:

x(t) = 196(t + 50(e−(.02)t − 1)) .

Now we want to solve for t when x = 10, 000. For large t, the exponential term is negligible, so T ,
the time to reach ground, is approximately given by the solution of

10, 000 = 196(T − 50)

so T = 101 seconds.

Problems 6.3
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1. Solve the initial value problem xy′ + y = x, y(2) = 5.

2. Solve the initial value problem: y′ = x(5− y), y(0) = 1.

3. Solve the initial value problem (x + 1)y′ = 2y, y(1) = 1.

4. Solve the initial value problem xy′ − y = x3, y(1) = 2.

5. Solve the initial value problem y′ − 2xy = ex2
, y(0) = 4.

6. Solve the initial value problem:

4y′ + 3y = ex , y(0) = 7 .

7. Solve the initial value problem:

xy′ − 3y = x2 , y(1) = 4 .

8. Solve the initial value problem y′ − 2xy = ex2
, y(0) = 4.

9. Solve the initial value problem: y′ + y = ex, y(0) = 5.

10. Solve the initial value problem : y′ +
y

x
= x, y(1) = 2 .
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VII. Terchniques of Integration

Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many
problems in applied mathematics involve the integration of functions given by complicated formu-
lae, and practitioners consult a Table of Integrals in order to complete the integration. There are
certain methods of integration which are essential to be able to use the Tables effectively. These
are: substitution, integration by parts and partial fractions. In this chapter we will survey these
methods as well as some of the ideas which lead to the tables. After the study of this material,
students should be able to easily use any set of Integral Tables.

7.1 Substitution

This was introduced in section 4.1 (recall Proposition 4.5). To integrate a differential f(x)dx which
is not known to us, we seek a function u = u(x) so that the given differential can be rewritten as
a differential g(u)du whose integral is known to us. Then, if

∫
g(u)du = G(u) + C, we know that∫

f(x)dx = G(u(x)) + C. Finding and employing the function u often requires some experience
and ingenuity as the following examples show.

Example 7.1.
∫

x
√

2x + 1dx = ?

Let u = 2x + 1, so that du = 2dx and x = (u− 1)/2. Then∫
x
√

2x + 1dx =
∫

u− 1
2

u1/2 du

2
=

1
4

∫
(u3/2 − u1/2)du ==

1
4
(
2
5
u5/2 − 2

3
u3/2) + C

=
1
30

u3/2(3u− 5) + C =
1
30

(2x + 1)3/2(6x− 2) + C =
1
15

(2x + 1)3/2(3x− 1) + C ,

where at the end we have replaced u by 2x + 1.

Example 7.2.
∫

tanxdx =?

Since this isn’t on our tables, we revert to the definition of the tangent: tanx = sinx/ cos x. Then,
letting u = cos x, du = − sinxdx we obtain∫

tanxdx =
∫

sinx

cos x
dx = −

∫
du

u
= − lnu + C = − ln cos x + C = ln sec x + C .

Example 7.3.
∫

sec xdx =?

This is tricky, and there are several ways to find the integral. However, if we are guided by the
principle of rewriting in terms of sines and cosines, we are led to the following:

sec x =
1

cos x
=

cos x

cos2 x
=

cos x

1− sin2 x
.

Now we can try the substitution u = sinx, du = cos xdx. Then∫
sec xdx =

∫
du

1− u2
.
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This looks like a dead end, but a little algebra pulls us through. The identity

1
1− u2

=
1
2
( 1
1 + u

+
1

1− u

)
leads to ∫

du

1− u2
dx =

1
2

∫ ( 1
1 + u

+
1

1− u

)
du =

1
2
(ln(1 + u)− ln(1− u) + C .

Using u = sinx, we finally end up with∫
sec xdx =

1
2
(ln(1 + sin x)− ln(1− sinx) + C =

1
2

ln(
1 + sin x

1− sinx
) + C .

Example 7.4. As a circle rolls along a horizontal line, a point on the circle traverses a curve called
the cycloid. A loop of the cycloid is the trajectory of a point as the circle goes through one full
rotation. Let us find the length of one loop of the cycloid traversed by a circle of radius 1.

Let the variable t represent the angle of rotation of the circle, in radians, and start (at t = 0) with
the point of intersection P of the circle and the line on which it is rolling. After the circle has
rotated through t radians, the position of the point is as given as in figure 7.1.

Figure 7.1

1
1

t

t

1 � cos t

t � sin t
P

The point of contact of the circle with the line is now t units to the right of the original point of
contact (assuming no slippage), so

x(t) = t− sin t , y(t) = 1− cos t .

To find arc length, we use ds2 = dx2 + dy2, where dx = (1− cos t)dt, dy = sin tdt. Thus

ds2 = ((1− cos t)2 + sin2 t)2dt2 = (2− 2 cos t)2dt2

so ds =
√

2(1− cos t)dt, and the arc length is given by the integral

L =
√

2
∫ 2π

0

√
1− cos tdt .
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To evaluate this integral by substitution, we need a factor of sin t. We can get this by multiplying
and dividing by

√
1 + cos t:

√
1− cos t =

√
1− cos2 t√
1 + cos t

=
| sin t|√
1 + cos t

.

By symmetry around the line t = π, the integral will be twice the integral from 0 to π. In
that interval, sin t is positive, so we can drop the absolute value signs. Now, the substitution
u = cos t, du = − sin tdt will work. When t = 0, u = 1, and when t = π, u = −1. Thus

L = −2
√

2
∫ −1

1

u−1/2du = 2
√

2
∫ 1

−1

u−1/2du = 2
√

2(2u1/2)
∣∣1
−1

= 8
√

2 .

Problems 7.1. Evaluate the Integrals.

1.

∫ 2

0

x

1 + x4
dx

2.

∫
dx

(1 + x)
√

x

3.

∫
2 + x

1 + x
dx

4.

∫
xdx

1 + 4x2
=

5.

∫ 2

0

ex

1 + e2x
dx

6.

∫
arccos x√

1− x2
dx

7.

∫
(lnx + 1)2

x
dx

8.

∫
cos3 x sin2 xdx

9.

∫ 2

0

(x2 + 3x− 1)2(2x + 3)dx
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10.

∫ 2

0

dx

x2 + 4x + 5

11.

∫ 2

0

xdx

1 + 4x2
=

12.

∫ 2

0

dx

1 + 4x2
=

13.

∫
exdx

e2x + 1
=

14.

∫
dx

ex + e−x
=

15.

∫
dx√

5− 4x− x2
=

16.

∫
tan2 xdx =

17.

∫
tan3 xdx =

18.

∫
dx

x2 − 6x + 13
=

7.2 Integration by Parts

Sometimes we can recognize the differential to be integrated as a product of a function that is
easily differentiated and a differential that is easily integrated. For example, if the problem is to
find

(7.1)
∫

x cos xdx

then we can easily differentiate f(x) = x, and integrate cos xdx separately. When this happens,
the integral version of the product rule, called integration by parts, may be useful, because it
interchanges the roles of the two factors.

Recall the product rule: d(uv) = udv + vdu, and rewrite it as

(7.2) udv = d(uv)− vdu
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In the case of (7.1), taking u = x, dv = cos xdx, we have du = dx, v = sinx. Put this all in (7.2):

x cos xdx = d(x sinx)− sinxdx ,

and we can easily integrate the right hand side to obtain∫
x cos xdx = x sinx−

∫
sinxdx = x sinx + cos x + C .

7.1 Proposition (Integration by Parts). For any two differentiable functions u and v:

(7.3)
∫

udv = uv −
∫

vdu .

To integrate by parts:

1. First identify the parts by reading the differential to be integrated as the product of a
function u easily differentiated, and a differential dv easily integrated.

2. Write down the expressions for u, dv and du, v.

3. Substitute these epxressions in (7.3).

4. Integrate the new differential vdu.

Example 7.5. Find
∫

xexdx.

Let u = x, dv = exdx. Then du = dx, v = ex. (7.3) gives us∫
xexdx = xex −

∫
exdx = xex − ex + C .

Example 7.6. Find
∫

x2exdx.

The substitution u = x2, dv = exdx, du = 2xdx, v = ex doesn’t immediately solve the problem,
but reduces us to example 7.5:∫

x2exdx = x2ex − 2
∫

xexdx = x2ex − 2(xex − ex + C) = x2ex − 2xex + 2ex + C .

Example 7.7. To find
∫

lnxdx, we let u = ln x, dv = dx, so that du = (1/x)dx, v = x, and∫
lnxdx = x lnx−

∫
x

1
x

dx = x lnx−
∫

dx = x lnx− x + C .

This same idea works for arctanx: Let

u = arctan x, dv = dx du =
dx

1 + x2
, v = x ,
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and thus ∫
arctanxdx = x arctanx−

∫
x

1 + x2
dx = x arctanx− 1

2
ln(1 + x2) + C ,

where the last integration is accomplished by the new substitution u = 1 + x2, du = 2xdx.

Example 7.8. These ideas lead to some clever strategies. Suppose we have to integrate ex cos xdx.
We see that an integration by parts leads us to integrate ex sinxdx, which is just as hard. But
suppose we integrate by parts again? See what happens:

Letting u = ex, dv = cos xdx, du = exdx, v = sinx, we get

(7.4)
∫

ex cos xdx = ex sinx−
∫

ex sinxdx .

Now integrate by parts again: letting u = ex, dv = sinxdx, du = exdx, v = − cos x, we get∫
ex sinxdx = ex cos x +

∫
ex cos xdx .

Inserting this in (7.4) leads to∫
ex cos xdx = ex sinx− ex cos x−

∫
ex cos xdx .

Bringing the last term over to the left hand side and dividing by 2 gives us the answer:∫
ex cos xdx =

1
2
(ex sinx− ex cos x) + C .

Example 7.9. If a calculation of a definite integral involves integration by parts, it is a good idea
to evaluate as soon as integrated terms appear. We illustrate with the calculation of∫ 4

1

lnxdx

Let u = ln xdx, dv = dx so that du = dx/x, v = x, and∫ 4

1

lnxdx = x lnx
∣∣4
1
−

∫ 4

1

dx = 4 ln 4− x
∣∣4
1

= 4 ln 4− 3 .

Example 7.10.

∫ 1/2

0

arcsinxdx = ?

We make the substitution u = arcsinx, dv = dx, du = dx/
√

1− x2, v = x. Then∫ 1/2

0

arcsinxdx = x arcsin x
∣∣1/2

0
−

∫ 1/2

0

xdx√
1− x2

.
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Now, to complete the last integral, let u = 1− x2, du = −2xdx, leading us to∫ 1/2

0

arcsin xdx =
1
2
(
π

6
) +

1
2

∫ 3/4

1

u−1/2du =
π

12
+ u1/2

∣∣3/4

1
=

π

12
+
√

3
2
− 1 .

Problems 7.2. Evaluate the Integrals.

1.

∫
x(sinx)dx

2.

∫
exxdx

3.

∫
x ln(2x)dx

4.

∫
ln(2x)

x
dx

5.

∫
tan2 xdx

6.

∫
x(e2x + 1)dx

7.

∫
x2 sinxdx

8.

∫
(lnx)2dx .

9.

∫
x2 lnxdx .

10.

∫
arccos xdx .

11. If the region in the first quadrant bounded by the curves y = 1, y = ex and x = 1 is rotated
about the y-axis, what is the volume of the resulting solid?

12.

∫
sec3 xdx .
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7.3. Partial Fractions

The point of the partial fractions expansion is that integration of a rational function can be reduced
to the following formulae, once we have determined the roots of the polynomial in the denominator.

7.3. Proposition. a)
∫

dx

x− a
= ln |x− a|+ C ,

b)
∫

du

u2 + b2
=

1
b

arctan(
u

b
) + C ,

c)
∫

udu

u2 + b2
=

1
2

ln(u2 + b2) + C .

These are easily verified by differentiating the right hand sides (or by using previous techniques).

Example 7.11. Let us illustrate with an example we’ve already seen(for example, in example
7.3). To find the integral ∫

dx

(x− a)(x− b)

we check that

(7.5)
1

(x− a)(x− b)
=

1
a− b

( 1
x− a

− 1
x− b

)
,

so that ∫
dx

(x− a)(x− b)
=

1
a− b

(
ln |x− a| − ln |x− b|) + C =

1
a− b

ln |x− a

x− b
|+ C .

The algebraic manipulation in (7.5) can be applied to any rational function. Any polynomial can
be written as a product of factors of the form x− r or (x− a)2 + b2, where r is a real root and the
quadratic terms correspond to the conjugate pairs of complex roots. The partial fraction expansion
allows us to write the quotient of polynomials as a sum of terms whose denominators are of these
forms, and thus the integration is reduced to Proposition 7.3.

Here is the partial fractions procedure.

1. Given a rational function R(x), if the degree of the numerator is not less than the degree
of the denominator, by long division, we can write

R(x) = Q(x) +
p(x)
q(x)

where now deg p < deg q.

2. Find the roots of q(x) = 0. If the roots are all distinct (that is, there are no multiple roots),
express p/q as a sum of terms of the form

(7.6)
p(x)
q(x)

=
A

x− r
,

B

(x− a)2 + b2
,

Cx

(x− a)2 + b2
.
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3. Find the values of A, B, C, . . .. This is done putting the expression on the right hand side
over a common denominator, and then equating coefficients of the numerators in the equation.

4. Integrate term by term using Proposition 7.3.

If the roots are not distinct, the expansion is more complicated; we shall resume this discussion
later. For the present let us concentrate on the case of distinct roots, and how to find the coefficients
A,B,C, . . . in (7.6).

Example 7.12. Integrate ∫
xdx

(x− 1)(x− 2)
.

First we write

(7.7)
x

(x− 1)(x− 2)
=

A

x− 1
+

B

x− 2
.

Now multiply this equation by (x− 1)(x− 2), getting

x = A(x− 2) + B(x− 1) .

If we substitute x = 1, we get 1 = A(1− 2), so A = −1; now letting x = 2, we get 2 = B(2− 1, so
B = 2, and (7.7) becomes

x

(x− 1)(x− 2)
=

−1
x− 1

+
2

x− 2
.

Integrating, we get∫
xdx

(x− 1)(x− 2)
= − ln |x− 1|+ 2 ln |x− 2|+ C = ln

(x− 2)2

|x− 1|
+ C .

So, this is the procedure for finding the coefficients of the partial fractions expansion when the
roots are all real and distinct:

1. Write down the expansion with unknown coefficients.

2. Multiply through by the product of all the terms x− r.

3. Substitute each root in the above equation; each substitution determines one of the coeffi-
cients.

Example 7.13. Integrate ∫
(x2 − 3)dx

(x2 − 1)(x− 3)
.

Here the roots are ±1, 3, so we have the expansion

(7.8)
x2 − 3

(x2 − 1)(x− 3)
=

A

x + 1
+

B

x− 1
+

C

x− 3
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leading to
x2 − 3 = A(x− 1)(x− 3) + B(x + 1)(x− 3) + C(x + 1)(x− 1) .

Substitute x = −1 : 1− 3 = A(−2)(−4), so A = −1/4.

Substitute x = 1 : 1− 3 = B(2)(−2), so B = 1/2.

Substitute x = 3 : 9− 3 = C(4)(2), so C = 3/4, and (7.8) becomes

x2 − 3
(x2 − 1)(x− 3)

= (−1
4
)

1
x + 1

+ (
1
2
)

1
x− 1

+ (
3
4
)

1
x− 3

,

and the integral is∫
(x2 − 3)dx

(x2 − 1)(x− 3)
= −1

4
ln |x + 1|+ 1

2
ln |x− 1|+ 3

4
ln |x− 3|+ C .

Quadratic Factors

Example 7.14.

∫
dx

x2 − 4x− 5
= ?

Here we can factor: x2 − 4x− 5 = (x + 1)(x− 5), so we can write

1
x2 − 4x− 5

=
A

x + 1
+

B

x− 5

and solve for A and B as above: A = 1/6, B = −1/6, so we have

1
x2 − 4x− 5

=
1
6
(

1
x− 5

− 1
x + 1

)

and the integral is ∫
dx

x2 − 4x− 5
=

1
6

ln |x− 5
x + 1

|+ C .

Example 7.15.

∫
dx

x2 − 4x + 5
= ?

Here we can’t find real factors, because the roots are complex. But we can complete the square:
x2 − 4x + 5 = (x− 2)2 + 1, and now use Proposition (7.3 b):∫

dx

x2 − 4x + 5
=

∫
dx

(x− 2)2 + 1
= arctan(x− 2) + C .

Example 7.16.

∫
(x + 3)dx

x2 − 4x + 5
= ?
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Here we have to be a little more resourceful. Again, we complete the square, giving

x + 3
x2 − 4x + 5

=
x + 3

(x− 2)2 + 1
.

If only that x + 3 were x− 2, we could use Proposition 7.3c, with u = x− 2. Well, since x + 3 =
x− 2 + 5, there is no problem:∫

(x + 3)dx

x2 − 4x + 5
=

∫
(x− 2)dx

(x− 2)2 + 1
+

∫
5dx

(x− 2)2 + 1
=

1
2

ln((x− 2)2 + 1) + 5 arctan(x− 2) + C .

Example 7.17.

∫
(2x + 1)dx

x2 − 6x + 14
= ?

First, we complete the square in the denominator: x2 − 6x + 14 = (x − 3)2 + 5. Now, write the
numerator in terms of x− 3 : 2x + 1 = 2(x− 3) + 7. This gives the expansion:

(2x + 1)dx

x2 − 6x + 14
=

7
(x− 3)2 + 5

+ 2
x− 3

(x− 3)2 + 5

so, using Proposition 7.3:∫
(2x + 1)dx

x2 − 6x + 14
= 7

∫
dx

(x− 3)2 + 5
+ 2

∫
(x− 3)dx

(x− 3)2 + 5

=
7√
5

arctan
x− 3√

5
+ ln((x− 3)2 + 5) + C .

Example 7.18.

∫
(x + 1)dx

x(x2 + 1)
= ?

Here we have to expect each of the terms in Proposition 7.3 to appear, so we try an expression of
the form

(7.9)
x + 1

x(x2 + 1)
=

A

x
+

B

x2 + 1
+

Cx

x2 + 1
.

Clearing the denominators on the right, we are led to the equation

(7.10) x + 1 = A(x2 + 1) + Bx + Cx2 .

Setting x = 0 gives 1 = A. But we have no more roots to substitute to find B and C, so instead we
equate coefficients. The coefficient of x2 on the left is 0, and on the right is A + C, so A + C = 0;
since A = 1, we learn that C = −1. Comparing coefficients of x we learn that 1 = B. Thus (7.9)
becomes

x + 1
x(x2 + 1)

=
1
x

+
1

x2 + 1
− x

x2 + 1
,

and our integral is ∫
(x + 1)dx

x(x2 + 1)
= ln |x|+ arctanx− 1

2
ln(x2 + 1) + C .
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Example 7.19.

∫
(x2 + 1)dx

x(x2 − 4x + 5)
= ?

The denominator is x((x− 2)2 + 1), so we expect a partial fractions expansion of the form

(7.11)
x2 + 1

x(x2 − 4x + 5)
=

A

x
+

B

(x− 2)2 + 1
+

C(x− 2)
(x− 2)2 + 1

.

Clearing of denominators, we obtain the equation

x2 + 1 = A((x− 2)2 + 1) + Bx + C(x− 2)x .

For x = 0, we obtain 1 = A(5), so A = 1/5. Comparing coefficients of x2 we obtain 1 = A + C, so
C = −1/5. Comparing coefficients of x we obtain 0 = −4A + B − 2C, so 0 = −4/5 + B + 2/5, so
B = 2/5 and (7.11) becomes

x2 + 1
x(x2 − 4x + 5)

= (
1
5
)
1
x

+ (
2
5
)

1
(x− 2)2 + 1

− (
1
5
)

x− 2
(x− 2)2 + 1

,

which we can integrate to∫
(x2 + 1)dx

x(x2 − 4x + 5)
=

1
5

ln |x|+ 2
5

arctan(x− 2)− 1
10

ln(x2 − 4x + 5) + C .

Multiple Roots

If the denominator has a multiple root, that is, there is a factor x− r raised to a power, then we
have to allow for the possibility of terms in the partial fraction of the form 1/(x − r) raised to
the same power. But then the numerator can be (as we have seen above in the case of quadratic
factors) a polynomial of degree as much as one less than the power. This is best explained through
a few examples.

Example 7.20.

∫
(x2 + 1)dx

x3(x− 1)
= ?

We have to allow for the possibility of a term of the form (Ax2 +Bx+C)/x3, or, what is the same,
an expansion of the form

(7.12)
x2 + 1

x3(x− 1)
=

A

x
+

B

x2
+

C

x3
+

D

x− 1
.

Clearing of denominators, we obtain

x2 + 1 = Ax2(x− 1) + Bx(x− 1) + C(x− 1) + Dx3 .

Substituting x = 0 we obtain 1 = C(−1), so C = −1. Substituting x = 1, we obtain 2 = D. To
find A and B we have to compare coefficients of powers of x. Equating coefficients of x3, we have
0 = A + D, so A = −2. Equating coeffients of x2, we have 1 = −A + B, so B = 1 + A = −1. Thus
the expansion (7.12) is

x2 + 1
x3(x− 1)

= − 2
x
− 1

x2
− 1

x3
+

2
x− 1

,

147



which we can integrate term by term:∫
(x2 + 1)dx

x3(x− 1)
= −2 ln |x|+ 1

x
+

1
2x2

+ 2 ln |x− 1|+ C .

If the denominator has a quadratic factor raised to a power, the situation becomes much more
complicated. If the quadratic factor has real roots, we can solve by partial fractions; otherwise we
need to turn to the methods of the next section.

Example 7.21.

∫
dx

(1− x2)2
= ?

Noting that 1− x2 = (1− x)(1 + x) we seek an expansion of the form

(7.13)
1

(1− x2)2
=

A

1− x
+

B

(1− x)2
+

C

1 + x
+

D

(1 + x)2
.

Clearing of denominators:

1 = A(1− x)(1 + x)2 + B(1 + x)2 + C(1− x)2(1 + x) + D(1− x)2 .

Evaluating at x = 1, we get B = 1/4; at x = −1, D = 1/4. Equating constant terms: 1 =
A + B + C + D, and equating the coefficients of x3 gives −A + C = 0, so all coefficients are equal
to 1/4. Now we easily integrate

(7.14)
∫

dx

(1− x2)2
=

1
4
(− ln(1−x)+

1
1− x

+ln(1+x)− 1
1 + x

) =
1
4

ln(
1 + x

1− x
)+

1
2
(

x

1− x2
)+C .

Problems 7.3 Evaluate the Integrals.

1.

∫
dx

x2(x + 2)

2.

∫
2 + x

1 + x
dx

3.

∫ 4

2

dx

x(x− 1)

4.

∫ 2

1

x2 − 4x + 1
x(x− 4)2

dx

5.

∫ 4

2

dx

x2 − 1

6.

∫ 2

1

dx

x2(x + 1)
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7.

∫
dx

x(x− 1)(x + 2)

8.

∫ 4

2

dx

x(x− 1)2

9.

∫
dx

x2(x− 1)

10.

∫
dx

x(x2 + 4x + 5)
=

11.

∫
(x + 1)dx

x(x + 3)
.

12.

∫
(x + 1)dx

x2(x + 3)
.

13.

∫
dx

(x− 1)(x + 2)2
.

14.

∫
(x2 − 1)dx

(x2 + 1)(x + 3)
.

15.

∫
x2dx

(1− x2)2
.

7.4 Trigonometric Methods

Now, although the above techniques are all that one needs to know in order to use a Table of
Integrals, there is one form which appears so often, that it is worthwhile seeing how the integration
formulae are found. Expressions involving the square root of a quadratic function occur quite
frequently in practice. How do we integrate

√
1− x2 or

√
1 + x2 ?

When the expressions involve a square root of a quadratic, we can convert to trigonometric functions
using the substitutions suggested by figure 7.2.

Figure 7.2

�
1 � x2

1

1

x x

u u

(A) (B)

�
1 � x2
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Example 7.22. To find
∫ √

1− x2dx, we use the substitution of figure 7.2A: x = sinu, dx =
cos udu,

√
1− x2 = cos u. Then ∫ √

1− x2dx =
∫

cos2 udu .

Now, we use the half-angle formula: cos2 u = (1 + cos 2u)/2:∫ √
1− x2dx =

∫
1 + cos 2u

2
du =

u

2
+

sin 2u

4
+ C .

Now, to return to the original variable x, we have to use the double angle formula: sin 2u =
2 sinu cos u = x

√
1− x2, and we finally have the answer:∫ √

1− x2dx =
arcsinx

2
+

x
√

1− x2

4
+ C .

Example 7.23. To find
∫ √

1 + x2dx, we use the substitution of figure 7.2B: x = tanu, dx =
sec2 udu,

√
1 + x2 = sec u. Then ∫ √

1 + x2dx =
∫

sec3 udu .

This is still a hard integral, but we can discover it by an integration by parts (see problem 12 of
section 7.2) to be ∫

sec3 du =
1
2
(sec u tanu + ln | sec u + tanu|) + C .

Now, we return to figure 7.2B to write this in terms of x: tanu = x, sec u =
√

1 + x2 . We finally
obtain ∫ √

1 + x2dx =
1
2
(x

√
1 + x2 + ln |

√
1 + x2 + x|) + C .

Example 7.24.

∫
x
√

1 + x2dx = ?

Don’t be misled: always try simple substitution first; in this case the substitution u = 1+x2, du =
2xdx leads to the formula∫

x
√

1 + x2dx =
1
2

∫
u1/2du =

2
3
(1 + x2)3/2 + C .

Example 7.25.

∫
x2

√
1− x2dx = ?

Here simple substitution fails, and we use the substitution of figure 7.2A:

x = sinu, dx = cos udu,
√

1− x2 = cos u .
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Then ∫
x2

√
1− x2dx =

∫
sin2 u cos2 udu .

This integration now follows from use of double- and half-angle formulae:∫
sin2 u cos2 udu =

1
4

∫
sin2(2u)du =

1
8

∫
(1− cos(4u))du =

1
8
(u− sin(4u)

4
) + C .

Now, sin(4u) = 2 sin(2u) cos(2u) = 4 sinu cos u(1− 2 sin2 u) = 4x
√

1− x2(1− 2x2). Finally∫
x2

√
1− x2dx =

arcsin x

8
+

x
√

1− x2(1− 2x2)
2

+ C .

Example 7.26. Let’s do example 7.21 using these methods. We make the substitution of figure
7.2A: x = sinu, dx = cos udu,

√
1− x2 = cos u, leading to∫
dx

(1− x2)2
=

∫
cos udu

cos4 u
=

∫
sec3 udu ,

which we found in problem 12 of section 7.2 to be

1
2

sec u tanu +
1
4

ln
1 + sin u

1− sinu
+ C .

Substituting back from u to x, using figure 2a, we get (7.14).

Example 7.27.

∫
dx

(1 + x2)2
= ?

We use the substitution of figure 7.2B: x = tan u, dx = sec udu,
√

1 + x2 = sec u This gives∫
dx

(1 + x2)2
=

∫
sec2 udu

sec4 u
=

∫
cos2 udu =

1
2
(u + sinu cos u) + C =

1
2
(arctanx +

x

1 + x2
) + C .

Problems 7.4

In this problem set, we not only have trigonometric substitutions, but also a variety of problems
using methods from the entire chapter.

1.

∫
x2dx√
9− x2

.

2.

∫
x2dx√
9 + x2

.

3.

∫
(x + 1)x12dx . .
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4.

∫
x(x + 1)12dx

5.

∫ e

1

x2 ln(2x)dx .

6.

∫
xdx

(1− x2)2
.

7.

∫
x2dx

(1 + x2)2
.

8.

∫ √
x(x + 1)dx .

9. The curve y = cos x is revolved about the y-axis, for x running from o to pi/2. Find the volume
of the resulting solid.

10.

∫
x3dx

(1 + x2)
.
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VIII. Indeterminate Forms and Improper Integrals

8.1 L’Hôpital’s Rule

In Chapter 2 we intoduced l’Hôpital’s rule and did several simple examples. First we review the
material on limits before picking up where Chapter 2 left off.

Suppose f is a function defined in an interval around a, but not necessarily at a. Then we write

lim
x→a

f(x) = L

if we can insure that f(x) is as close as we please to L just by taking x close enough to a. If f is
also defined at a, and

lim
x→a

f(x) = f(a)

we say that f is continuous at a . If the expression for f(x) is a polynomial, we found limits by
just substituting a for x; this works because polynomials are continuous.

But how do we calculate limits when the expression f(x) cannot be determined at a? For example,
the definition of the derivative:

(8.1) f ′(x) = lim
x→a

f(x)− f(a)
x− a

.

This is an example of an indeterminate form of type 0/0: an expression which is a quotient of two
functions, both of which are zero at a. As for (8.1), in case f(x) is a polynomial, we found the
limit by long division, and then evaluating the quotient at a (see Theorem 1.1). For trigonometric
functions, we devised a geometric argument to calculate the limit (see Proposition 2.7).

For the general expression f(x)/g(x) we have

Proposition 8.1 (l’Hôpital’s Rule). If f and g have continuous derivatives at a and f(a) = 0
and g(a) = 0, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

To see this we use the Mean Value Theorem, theorem 2.4. According to that theorem, we can
write f(x) − f(a) = f ′(c)(x − a) for some c between x and a, and gx) − g(a) = g′(d)(x − a) for
some d between x and a. Since f(a) = 0 and g(a) = 0, we have

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(c)(x− a)
g′(d)(x− a)

= lim
x→a

f ′(c)
g′(d)

.

But now, by assumption the derivatives f ′ and g′ are continuous. So, since c and d lie between x
and a, f ′(c) and g′(d) have the same limits as f ′(x) and g′(x) as x → a.
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Example 8.1. lim
x→2

x3 − 3x + 2
tan(πx)

=

After checking that the hypotheses are satisfied, we get

lim
x→2

x3 − 3x + 2
tan(πx)

=l′H lim
x→2

3x2 − 3
π sec2(πx)

=
12− 9

π
=

3
π

.

The second limit can be evaluated since both functions are continuous and the denominator
nonzero.

Example 8.2. lim
x→0

x2 + 2
3x2 + 1

=

Since neither the numerator nor denominator is zero at x = 0, we can just substitute 0 for x,
obtaining 2 as the limit. However if we apply l’Hôpital’s rule without checking that the hypotheses
are satisfied, we get the wrong answer: 1/3.

Example 8.3. lim
x→0

cos(3x)− 1
sin2(4x)

=

Both numerator and denominator are 0 at x = 0, so we can apply l’H (a convenient abbreviation
for l’Hôpital’s rule):

lim
x→0

cos(3x)− 1
sin2(4x)

=l′H lim
x→0

−3 sin(3x)
8 sin(4x cos(4x)

= −3
8

lim
x→0

sin(3x)
sin(4x)

lim
x→0

1
cos(4x)

.

The last limit is 1, and the other limit can be calculated by l’Hôpital’s rule:

lim
x→0

sin(3x)
sin(4x)

=l′H lim
x→0

3 cos(3x)
4 cos(4x)

=
3
4

.

Thus the answer is −9/32.

l’Hôpital’s rule also works when taking the limit as x goes to infinity, or the limits are infinite. We
summarize all these rules:

Proposition 8.2. If f and g are differentiable functions, and suppose that limx→a f(x) and
limx→a g(x) are both zero or both infinite. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

.

The limit point a can be ±∞.

Example 8.4. lim
x→π

2
−

tanx

ln(π/2− x)
=
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The superscript “−” means that the limit is taken from the left; a superscript “+” means the limit
is taken from the right. Since both factors tend to ∞, we can use l’Hôpital’s rule:

lim
x→π

2
−

tanx

ln(π/2− x)
=l′H lim

x→π
2
−

sec2 x

−(π/2− x)−1
= − lim

x→π
2
−

π/2− x

cos2 x
.

Now, both numerator and denominator tend to 0, so again:

=l′H − lim
x→π

2
−

−1
−2 cos x sinx

= −∞ ,

since cos x sinx is positive and tends to zero. We leave it to the reader to verify that the limit from
the right is +∞.

Example 8.5. lim
x→π

2
−

tanx

sec x
=

This example is here to remind us to simplify expressions, if possible, before proceeding. If we just
use l’Hopital’s rule directly, we get

lim
x→π

2
−

tanx

sec x
=l′H lim

x→π
2
−

sec2 x

sec x tanx
= lim

x→π
2
−

sec x

tanx
,

which tells us that the sought-after limit is its own inverse, so is ±1. We now conclude that since
both factors are positive to the left of π/2, then the answer is +1. But this would have all been
easier to use some trigonometry first:

lim
x→π

2
−

tanx

sec x
= lim

x→π
2
−

sinx = 1 .

Example 8.6. lim
x→+∞

xn

ex
=

Both factors are infinite at the limit, so l’Hopital’s rule applies. Let’s take the cases n = 1, 2 first:

lim
x→+∞

x

ex
=l′H lim

x→+∞

1
ex

= 0 ,

lim
x→+∞

x2

ex
=l′H lim

x→+∞

2x

ex
=l′H 2 lim

x→+∞

1
ex

= 0 .

We see that for a larger integer n, the same argument will work, but with n applications of
l’Hôpital’s rule. We say that the exponential function goes to infinity more rapidly than any
polynomial.

Example 8.7. lim
x→+∞

x

lnx
=

lim
x→+∞

x

lnx
=l′H lim

x→+∞

1
1/x

= lim
x→+∞

x = +∞ .

In particular, much as in example 8.6, one can show that polynomials grow more rapidly than any
polynomial in lnx.
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Problems 8.1. Evaluate the limits.

1. lim
x→0

cos x− 1
x2

=

2. lim
x→0

sinx− x

x(cos x− 1)
=

3. lim
x→π

(x− π)3

sinx + x− π
=

4. lim
x→0

ex − 1− x

x2
=

5. lim
x→1

lnx

cos((π/2)x)
=

6. lim
x→0+

(
cos(

√
x)− 1
x

) =

7. lim
x→5

(
5cos(πx) + x

x2 − 25
) =

8. lim
x→∞

x√
1 + x2

=

9. lim
x→∞

x lnx

x2 + 1
=

10. lim
x→∞

x(x + 1)√
x3 − 1

=

8.2 Other inderminate forms

Many limits may be calculated using l’Hôpital’s rule. For example: x → 0 and lnx → −∞ as
x → 0 from the right. Then what does x lnx do? This is called an indeterminate form of type
0 · ∞, and we calculate it by just inverting one of the factors.

Example 8.9.

lim
x→0

x lnx = lim
x→0

lnx

1/x
=l′H lim

x→0

1/x

−1/x2
= − lim

x→0

x2

x
= − lim

x→0
x = 0 .
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Example 8.10. lim
x→∞

x(π/2− arctanx) =

This is of type 0 · ∞, so we invert the first factor:

lim
x→∞

x(π/2− arctanx) = lim
x→∞

π/2− arctanx

1/x
=l′H lim

x→∞

−1/(1 + x2)
−1/x2

= lim
x→∞

x2

1 + x2

= lim
x→∞

1
1 + x−2

= 1 .

Another case, the indeterminate form ∞−∞, is to calculate limx→a(f(x)− g(x)), where both f
and g approach infinity as x approaches a. Although both terms become infinite, the difference
could stay bounded, tend to zero, or also tend to infinity. In these cases we have to manipulate
the form algebraically to bring it to one of the above forms.

Example 8.11. lim
x→0

(
1

sinx
− 1

x
) =

lim
x→0

(
1

sinx
− 1

x
) = lim

x→0

x− sinx

x sinx
=l′H lim

x→0

1− cos x

sinx + x cos x
=l′H lim

x→0

sinx

2 cos x− x sinx
= 0 .

Example 8.12. lim
x→∞

x−
√

x2 + 20 =

Here we can change the subtraction of two positive functions to that of addition by remembering

x−
√

x2 + 20 = (x−
√

x2 + 20)
x +

√
x2 + 20

x +
√

x2 + 20
=

x2 − (x2 + 20)
x +

√
x2 + 20

=
−20

x +
√

x2 + 20
,

lim
x→∞

x−
√

x2 + 20 = lim
x→∞

−20
x +

√
x2 + 20

= 0 .

Finally, whenever the difficulty of taking a limit is in the exponent, try taking logarithms.

Example 8.13. lim
x→∞

x1/x =

Let’s take logarithms:

lim
x→∞

ln(x1/x) = lim
x→∞

1
x

lnx = lim
x→∞

lnx

x
=l′H lim

x→∞

1/x

1
= 0 .

Now, exponentiate, using the continuity of exp:

lim
x→∞

x1/x = exp( lim
x→∞

ln(x1/x)) = e0 = 1 .

Problems 8.2: Find the limits.

1. lim
x→1

(
1

lnx
− 1

x− 1
)

2. lim
x→∞

√
1 + x2 − x

x
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3. lim
x→∞

x(
√

1 + x2 − x)

4. lim
x→π/2+

(tanx)(x− π/2)

5. lim
x→1+

(x− 1) ln(lnx)

8.3 Improper Integrals: Infinite Intervals

To introduce this section, let us calculate the area bounded by the x-axis, the lines x = −a, x = a
and the curve y = (1 + x2)−1. This is∫ a

−a

dx

1 + x2
= arctan x

∣∣a
−a

= 2 arctan a .

Since arctan a is always less than π/2, this area is bounded no matter how large we choose a.
In fact, since lima→∞ arctan a = π/2, the area under the total curve y = (1 + x2)−1 adds up to
2(π/2) = π . We can write this in the form

(8.2)
∫ ∞

−∞

dx

1 + x2
= π ,

using the following definitions.

Definition 8.1. a ) Suppose that f(x) is defined and continuous for all x ≥ c. We define∫ ∞

c

f(x)dx = lim
a→∞

∫ a

c

f(x)dx

if the limit on the right exists. In this case we say the integral converges. If there is no limit on
the right, we say the integral diverges.

b) In the same way, if f(x) is defined and continuous in an interval x ≤ c, we define∫ c

−∞
f(x)dx = lim

a→−∞

∫ c

a

f(x)dx

if the limit exists.

c) If f(x) is defined and continuous for all x. Then

(8.3)
∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx +

∫ ∞

0

f(x)dx ,

if both integrals on the right side converge.
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Note that it is insufficient to define (8.3) by the limit lima→∞
∫ a

−a
f(x)dx, for this integral is always

zero for an odd function, say f(x) = x, and it would not be appropriate to say that such an integral
converges.

Example 8.14.

∫ ∞

0

e−xdx = 1 .

First we calculate the integral up to the positive number a:∫ a

0

e−xdx = −e−x
∣∣a
0

= 1− 1
ea

.

Now, since e−a → 0 as a →∞, the limit exists and is 1.

Example 8.15.

∫ ∞

1

x−pdx converges for p > 1.

We calculate the integral over a finite interval:∫ a

1

x−pdx =
1

−p + 1
x−p+1

∣∣a
1

=
1

−p + 1
(a−p+1 − 1) .

Now, if −p + 1 < 0, a−p+1 → 0 as a →∞, so our conclusion is valid, and in fact

(8.4)
∫ ∞

1

dx

xp
=

1
p− 1

for p > 1 .

Also, if p < 1 then −p + 1 > 0, so a−p+1 becomes infinite with a, and thus

(8.5)
∫ ∞

1

dx

xp
diverges for p < 1 .

The case p = 1 cannot be handled this way, because then −p + 1 = 0. But

Example 8.16.

∫ ∞

1

dx

x
diverges

We calculate over a finite interval: ∫ a

1

dx

x
= lnx

∣∣a
1

= ln a ,

which goes to infinity as a →∞.

Sometimes we can conclude that the improper integral converges, even though we cannot calculate
the actual limit. This is because of the following fact:

Proposition 8.3. Suppose that F is an increasing continuous function of x for all x ≥ c, and
suppose that F is bounded; that is, there is a positive number M such that M ≥ F (x) for all x.
Then limx→∞ F (x) exists.
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This is an important fact, known as the Monotone Convergence Theorem the proof of which depends
upon an axiomatic development of the real number system. To see why it is reasonable we consider
the least upper bound M0 of the set of values F (x). The relevant fact about real numbers is that
there always is a least upper bound for any nonempty bounded set of real numbers. There must
be values F (x) which come as close as we please to M0, for if not, the values of F stay away from
M0, so this could not be the least upper bound. But now, because F is increasing, that means
that eventually all values come that close to M0.

Example 8.17.

∫ ∞

1

e−x2
dx converges.

In this range, x2 ≥ x, so e−x2 ≤ e−x. So, for any a,∫ a

1

e−x2
dx ≤

∫ a

1

e−xdx ≤ 1

by example 8.16. Thus the values of the integral are bounded by 1. But since the function is
always positive, the integrals increase as a increases. Thus by Proposition 8.3, the limit exists.

This example generalizes to the following

Proposition 8.4. (Comparison Test). Suppose that f and g are continuous functions defined
for all x ≥ c, and suppose that for all x, 0 ≤ f(x) ≤ g(x). Then

a) If
∫ ∞

c

g(x)dx converges, then
∫ ∞

c

f(x)dx converges .

b) If
∫ ∞

c

f(x)dx diverges, then
∫ ∞

c

g(x)dx diverges .

Example 8.18.

∫ ∞

1

| cos x|dx

x3/2
converges.

Now, we don’t know how to integrate this function, but we do know that | cos x| ≤ 1. Thus the
integrand is always less than or equal to x−3/2, and so, by example 8.17 and proposition 8.6, we
can conclude that our integral converges.

Problems 8.3

In problems 1-6, determine whether or not the integral converges. If it does, try to find its value.

1.

∫ ∞

0

xe−x2
dx =

2.

∫ ∞

0

x2

x3 + 1
dx =
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3.

∫ 1

0

dx

x9/10
=

4.

∫ ∞

3

dx

x(lnx)2
=

5.

∫ ∞

1/5

ln(5x)
x2

dx =

6.

∫ ∞

−∞

dx

(1 + x2)3/2
=

7. Find the area under the curve y = (x2 − x)−1, above the x-axis and to the right of the line
x = 2.

8. The region in the first quadrant to the right of the line x = 1, and below the curve y = 1/x is
rotated about the x-axis. Show that the resulting solid has finite volume.

9. Find the area under the curve y = (x2 − x)−1, above the x-axis and to the right of the line
x = 2.

10. The equiangular spiral is the curve given parametrically by the equations

x = e−t cos t , y = e−t sin t , 0 ≤ t < ∞ .

Show that this curve crosses the x axis infinitely often, but is of finite length.

8.4 Improper Integrals: Finite Asymptotes

Now, it is also possible, for a function which has a vertical asymptote, that the values approach
the asymptote so fast that the area enclosed is finite.

Example 8.19. Consider y = x−1/2 for x positive. For a slightly larger than 0,∫ 1

a

x−1/2dx = 2x1/2
∣∣1
a

= 2(1−
√

a) .

Now, as a → 0+, this converges to 2. Thus it makes sense to say that
∫ 1

0
x−1/2dx = 2, as we do

with this definition.

Definition 8.2. Let f(x) be defined and continuous for all x in an interval (c, b]. We define∫ b

c

f(x)dx = lim
a→c+

∫ b

a

f(x)dx
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if the limit exists. Similarly if f(x) is defined and continuous for all x in an interval [b, c), we define∫ c

b

f(x)dx = lim
a→c−

∫ a

b

f(x)dx .

Example 8.20.

∫ 1

0

x−pdx converges for p < 1.

We calculate the integral over an interval (a, 1), with a > 0:∫ 1

a

x−pdx =
1

−p + 1
x−p+1

∣∣1
a

=
1

−p + 1
(1− a−p+1) .

Now, if −p + 1 > 0, a−p+1 → 0 as a → 0, so our conclusion is valid, and in fact

(8.6)
∫ 1

0

dx

xp
=

1
1− p

for p < 1 .

Also, if p > 1 then −p + 1 < 0, so a−p+1 becomes infinite as a goes to zero, and thus

(8.7)
∫ 1

0

dx

xp
diverges for p > 1 .

As for the case p = 1, since ∫ 1

a

dx

x
= ln x

∣∣1
a

= − ln a ,

this integral diverges to infinity as a → 0. However:

Example 8.21.

∫ 1

0

lnxdx converges .

By example 9 of chapter 7, for a positive and near 0,∫ 1

a

lnxdx = (x lnx− x)
∣∣1
a

= −1− (a ln a− a) .

By example 8.9, lima→0+ a ln a = 0, so the limit exists and is equal to -1.

Problems 8.4. Determine whether or not the integral converges. If it does, try to find its value.

1.

∫ π/2

0

dx

1− cos x
=

2.

∫ 1

0

dx

(1− x)3/2
=
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3.

∫ 1/2

0

dx√
x(1− x)

4.

∫ 2

0

dx√
x

=

5.

∫ 1

0

dx

(x− 1)2
=

6.

∫ 10

1

dx

x
√

lnx
=

7.The region in the first quadrant above the line y = 1, and left of the curve y = 1/x is rotated
about the y-axis. Show that the resulting solid has finite volume.
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IX. Sequences and Series

9.1 Sequences

The purpose of this chapter is to introduce a particular way of generating algorithms for finding
the values of a function defined, not by a formula, but by its properties. For example, the trigono-
metric functions have been defined geometrically,and the exponential function as the solution of a
particular differential equations. This type of definition, while uniquely identifying the function,
does not give a way to calculate its values at specific points. Such a way is given by the technique
of Infinite Series. Computer algorithms for determining the value of a function are based on the
usual arithmetic operations; thus an exact determination can only be achieved for those functions
expressed explicitly in terms of the arithmetic operations: the rational functions (quotients of
polynomials). If a function is transcendental, its values can only be approximated. For example,
we have seen that

ex = lim
n→∞

(1 +
x

n
)n .

This expression tells us that, if for any n, we calculate the expression on the right, these numbers
will, for n large enough, be close to the “true” value of ex. Now, it turns out that this is a very
inefficient way to calculate ex, and the expression as an infinite series (which we will discuss in
depth later in this chapter)

(9.1) ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

is far better. Equation (9.1) is to be understood in this way: start with E0 = 1. To get E1 add
x/1! to E0; now get E2 by adding x2/2! to E1, and so forth. That is, for every n ≥ 1 add xn/n!
to En−1 to get En.Finally, if we take n large enough, we have a good approximation to ex, and
as n increases the approximation gets better. Of course, it is important to have estimates on how
good this approximation is, as well as, in general, to have ways of discovering these approximating
sums. That is what we study in this chapter, starting with the idea of convergence in the sense of
“good approximation”.

Definition 9.1. A sequence is a list of numbers, denoted {an}, where an is the nth term of the
sequence.

A sequence may be defined by a specific formula or an algorithm for determining the members of
the sequence successively.

Example 9.1. The formulae

(9.2) an = n , n ≥ 1 ; bn =
n + 1
n− 1

, n ≥ 2 ; cn = 3 + 2n, n ≥ 0

define the sequences, respectively:

1, 2, 3, . . . , n, . . . ;
3
1
,
4
2
,
5
3
, . . . ,

n + 1
n− 1

, . . . ; 3, 5, 7, 9, . . . , 3 + 2n, . . .

A sequence is said to be defined recursively, or by a recursive algorithm when we are told the
first member (or members) of the sequence; and then given an expression for determining the nth
number, once we have calculated the first n− 1 numbers. For example, the data:

c0 = 3 ; and for n > 0, cn = cn−1 + 2
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defines the last sequence of (9.2). Similarly, the first sequence of (9.2) is given by the recursion
a1 = 1, an = an−1 + 1.

The symbol n! (read “n-factorial”) is used to denote the product of the first n integers. This also
has the recursive definition: a0 = 1, and for n > 0, an = nan−1. (Note that we have taken 0! to
be 1).

We can also verify formulas or assertions about the positive integers by recursion. That is, suppose
that P (n) represents an assertion for the integer n. If we can verify that (A): P (1) is true, and
(B): the truth of P (n) follows from the truth of P (n − 1), then we can assert that P (n) is true
for all n. For, (A) tells us that P (1) is true, and so by (B) we conclude that P (2) is also true,
and so, by (B) again, P (3) is true, and so also P (4), P (5) and so on. For any integer n, with n
applications of (B), we verify the truth of P (n). For future reference we record this method as:

Proposition 9.1. (The Principle of Mathematical Induction). Let P (n) represent an
assertion about the positive integer n. If we can verify P (1) and also show that the truth of
P (n− 1)implies the truth of P (n), then P (n) is true for all integers n.

Example 9.2. Consider the sequence defined recursively by a1 = 1, an = an−1 + n. Note that
this equivalent to saying that an is the sum of the first n positive integers. Let’s show that

an =
n(n + 1)

2
.

Call this the assertion P (n). Clearly a1 = 1(2)/2, so P (1) is true. Now, let’s assume we know the
truth of P (n− 1), and verify it for n:

an = an−1 + n =
(n− 1)n

2
+ n =

n2 − n + 2n

2
=

n2 + n

2
=

n(n + 1)
2

.

Example 9.3. Define the sequence recursively by c0 = 1, cn = 1 + rcn−1. Then

cn =
1− rn+1

1− r
.

The first case (n = 0) is certainly true:

c0 = 1 =
1− r0+1

1− r
.

Now, let’s verify that the truth for n− 1 implies that for n:

cn = 1 + rcn−1 = 1 + r
1− rn

1− r
=

1− r + r − rn+1

1− r
=

1− rn+1

1− r
.

Of the sequences described in (9.2), the first and the third clearly grow without bound, but the
second is bounded; in fact, if we rewrite the general term as

bn =
n + 1
n− 1

=
1 + 1

n

1− 1
n

,
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we see that the sequence bn approaches 1 as n gets larger and larger. We say that bn converges to
1, as in the following definition.

Definition 9.2. A sequence {a1, a2, . . . , an, . . .} converges to a limit L, written

lim
n→∞

an = L ,

if, for every ε > 0, there is an n0 such that for all n ≥ n0 we have |an − L| < ε.

This just says that we can be sure that an is as close to L as we need it to be, just by taking
the index n large enough. We will rarely have to actually use this definition, relying more on
understanding what it says, and known facts about limits. For example:

Proposition 9.2. If the general term an of a sequence can be expressed as f(n) for a continuous
function f , then if we know that limx→∞ f(x) = L, then we can conclude that limx→∞ an = L.

As an application, using results from the preceding chapter, we have

Proposition 9.3.

(a) lim
n→∞

np = ∞ for p > 0 ,

(b) lim
n→∞

1
np

= 0 for p > 0 ,

(c) lim
n→∞

A1/n = 1 if A > 0 .

Let p and q be polynomials.

(d) lim
n→∞

p(n)
q(n)

= 0 if deg p < deg q, lim
n→∞

p(n)
q(n)

= ∞ if deg p > deg q .

(e) If the polynomials p and q have the same degree, then

lim
n→∞

p(n)
q(n)

=
a

b
,

where a and b are the leading coefficients of p and q.

(f) lim
n→∞

p(n)
en

= 0 for any polynomial p .

(g) lim
n→∞

p(n)
ln(n)c

= ∞ for any polynomial of positive degree and any positive c .
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These can all be derived by replacing n by x, and using limit theorems already discussed (such as
l’Hôpital’s rule).

Example 9.4. lim
n→∞

n2

n2 + n + 1
= 1 , by (e) above .

Example 9.5. lim
n→∞

(−1)n

n
= 0 ,

since the numerator oscillates between -1 and 1, and the denominator goes to zero. We should not
be perturbed by such oscillation, so long as it remains bounded. For example we also have

lim
n→∞

sin(n)
n

= 0 ,

since the term sin(n) remains bounded. The following propositions state the general rule for
handling such cases.

Proposition 9.4. a) (Squeeze theorem) Given three sequences an, bn, cn, if

an ≥ bn ≥ cn for all n , and lim
n→∞

an = lim
n→∞

cn = L ,

then also
lim

n→∞
bn = L .

b) If an = bncn, the sequence bn is bounded, cn ≥ 0 and limn→∞ cn = 0, then also limn→∞ an = 0.

Let’s see why b) is true, using a). Let M be the bound of the |bn|. Then

Mcn ≥ bncn ≥ −Mcn

so a) applies and the conclusion follows.

In some cases where none of the above rules apply, we have to return to the definition of convergence.

Example 9.6. For any a > 0, lim
n→∞

an

n!
= 0 .

To see why this is true, we think of the sequence as recursively defined: a1 = 1, and each an

is obtained by multiplying its predecessor by a/n. Now, eventually, that is, for n large enough,
a/n < 1/2. Thus each term after that is less than half its predecessor. This now surely looks like
a sequence converging to zero. To be more precise, let N be the first integer for which a/N < 1/2.
Then for any k > 0,

aN+k

(N + k)!
<

1
2k

aN

N !
.

Now the sequence on the right is a fixed number (aN/N ! ) times a sequence (1/2k) which tends to
zero. Thus our sequence converges to zero, also by the squeeze theorem (proposition 9.4a).

Note that in the above argument, we only had to show that the general term of our sequence is
dominated by the general term of a sequence converging to zero from some point on. What happens
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to any finite collection of terms of a sequence is not relevant to the question of convergence. We
shall use the word eventually to mean “from some point on”, or more precisely, “for all n greater
than some fixed integer N”. We restate proposition 9.4, using the word ”eventually”:

Proposition 9.5. a) (Squeeze theorem) Given three sequences an, bn, cn, if eventually

an ≥ bn ≥ cn for all n , and lim
n→∞

an = lim
n→∞

cn = L ,

then also
lim

n→∞
bn = L .

b) Suppose that an = bncn eventually, that is, for all n larger than some N . If the sequence bn is
bounded, cn ≥ 0 and limn→∞ cn = 0, then also limn→∞ an = 0.

Example 9.7. For any positve integer p, lim
n→∞

np

n!
= 0 .

The idea here is that the numerator is a product of p terms, whereas the denominator is a product
of n terms, so grows faster than the numerator. To make this precise, write

np

n!
=

n · · ·n
n(n− 1) · · · (n− p + 1)

1
(n− p)!

.

Now, if n is so large that n/(n− p) < 2 , (n > 2p will do), then the first factor is bounded by 2p.
Thus, for n > 2p, that is, eventually,

np

n!
< 2p 1

(n− p)!
.

Since 1/(n− p)! → 0 asn n →∞, the result follows from the squeeze theorem.

An important fact that we will need is the following.

Proposition 9.6. A bounded monotonically increasing sequence converges.

Let’s make sure that the terms involved are clear. A sequence an is bounded if there is a number
M such that M ≥ an for all n. A sequence is monotonically increasing if, for all n, an ≤ an+1.

Proposition 9.6 follows from the fact about real numbers that any bounded nonempty set has
a least upper bound. So, for a the least upper bound of the given sequence {an}, we have
limnrightarrow∞ an = a. For if c is any number less than a, it is not an upper bound of the
sequence, so there is anN such that c < aN < a. But now, since the sequence is monotonically
increasing, for every n ≥ N , we have c < an < a.

Finally, we note that the limit of a sum is the sum of the limits:

Proposition 9.7. If an = bn+cn, and the sequences bn and cn converge, then so does the sequence
an, and

lim
n→∞

an = lim
n→∞

bn + lim
n→∞

cn .

Problems 9.1
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Find the limits.

1. lim
n→∞

n

(lnn)15

2. lim
n→∞

nk

n!

3. lim
n→∞

(n + 1
n

)2

4. lim
n→∞

(2n− 1)2

n2 − 3n + 1

5. lim
n→∞

(1 + n)n

n!

6. Show part c) of proposition 9.3:

lim
n→∞

A1/n = 1 if A > 0 .

7. Find lim
n→∞

n1/n .

8. Find lim
n→∞

√
n2 + 1√
n3 + 1

.

9. Define the sequence an recursively by

a1 = 1 , an =
1
2
(10 + an−1) .

Show that an converges to 10.

10. Let an = rn where

r =
1 +

√
5

2
or r =

1−
√

5
2

.

Show that
an+2 = an+1 + an for all n ≥ 2 .

9.2 Series

For many sequences, in fact, the most important ones, the general term is formed by adding
something to its predecessor; that is, the sequence is formed by the recursion sn = sn−1 + an,
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where an is from another sequence. Such a sequence is called a series. Explicitly, the terms of the
series are

a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + a3 + · · ·+ an, · · · .

It is useful to use the summation symbol:

a1 + a2 + a3 + · · ·+ an =
n∑

k=1

ak .

Definition 9.3. The series
∞∑

k=0

ak

is to be considered as the limit of the sequence

sn =
n∑

k=0

ak .

If the limit L of the sequece {sn} exists, the series is said to converge, and L is called its sum. If
the limit does not exist, the series diverges. The terms of the sequence sn are called the partial
sums of the series.

Example 9.8.
∞∑

k=1

1
2k

= 1 .

Let’s look at a few partial sums:

1
2

,
3
4

,
7
8

,
15
16

, . . .

We see that, at least for the first four terms

(9.3) sn =
2n − 1

2n
.

Let’s now see that this is true for all n, using the principle of mathematical induction. Suppose
we’ve verified (9.3) for all integers up to n − 1; we now verify this for n. By definition and (9.3)
for sn−1:

sn = sn−1 +
1
2n

=
2n−1 − 1

2n−1
+

1
2n

.

Putting this all over the denominator 2n, we obtain

sn =
2n − 2 + 1

2n
=

2n − 1
2n

,

which is just (9.3) for sn.

Now, by (9.3):
∞∑

k=1

1
2k

= lim
n→∞

sn = lim
n→∞

2n − 1
2n

= lim
n→∞

(1− 1
2n

) = 1 .
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Remember that the index is a way of relating the partial sums of the series to the general term
from which it is defined, so if we change that relation consistently, we don’t change the series. For
example,

∞∑
k=1

ak =
∞∑

n=1

an =
∞∑

k=0

ak+1 =
∞∑

m=9

am−8

and so forth. Each representation comes about by replacing the index with a new index. For
example, if we substitute n for k, we get the first equality; if we substitute k + 1 for n we get the
second equality, and if we replace k + 1 by m− 8, we get the last one. It is often useful to make a
change of index as the next examples show.

Example 9.9.
∞∑

k=0

1
2k

= 2 .

For
∞∑

k=0

1
2k

= 1 +
∞∑

k=1

1
2k

= 1 + 1 = 2 .

Example 9.10.

∞∑
k=n

1
2k

=
1

2n−1
.

First, change the index by k = m + n, and then factor out 2−n:

∞∑
k=n

1
2k

=
∞∑

m=0

1
2m+n

= 2−n
∞∑

m=0

1
2m

= 2−n · 2 = 2−n+1 .

Proposition 9.8 (Geometric Series) :

∞∑
k=0

xk =
1

1− x
for |x| < 1 ,

∞∑
k=0

xk diverges for |x| ≥ 1 .

To show this, we obtain (by a clever little observation) a formula for the partial sums

sn =
n∑

k=0

xk = 1 + x + x2 + · · ·+ xn .

Note that
sn+1 = (1 + x + x2 + · · ·+ xn) + xn+1 = sn + xn+1 and

(9.4) sn+1 = 1 + (x + x2 + · · ·+ xn+1) = 1 + xsn .

(Note that (9.4) is the recursive definition of the partial sums we’ve already seen in example 9.3).
Equating these expressions for sn+1, we obtain sn + xn+1 = 1 + xsn. Solving this for sn:
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sn =
n∑

k=0

xk =
1− xn+1

1− x
,

so
∞∑

k=0

xk = lim
n→∞

sn = lim
n→∞

1− xn+1

1− x
,

which equals (1− x)−1 if |x| < 1 and diverges if |x| > 1.

We look at the cases x = ±1 separately. For x = 1, sn = n, so the series diverges. For x = −1,
the sequence sn is the sequence 1, 0, 1, 0, 1, 0, . . ., so cannot converge to any particular number.

Example 9.11.
∞∑

n=1

1
k(k + 1)

= 1 .

We first use the fact that
1

k(k + 1)
=

1
k
− 1

k + 1
.

Thus the partial sum sn can be calculated:

sn = (1− 1
2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + · · ·+ (

1
n
− 1

n + 1
)

= 1 + (−1
2

+
1
2
) + (−1

3
+

1
3
) + (−1

4
+

1
4
)− · · ·+ (− 1

n
+

1
n

)− 1
n + 1

= 1− 1
n + 1

,

which converges to 1 as n goes to infinity. This is an example of a telescoping series.

We now observe that if a series converges, its general term must go to zero.

Proposition 9.9. If
∞∑

k=0

ak converges, then lim
n→∞

ak = 0 .

To see this, let sn =
∑n

k=0 ak, tn =
∑n−1

k=0 ak. Then, since these are both sequences of the partial
sums of the series, but indexed differently, limn→∞ sn = limn→∞ tn. Thus limn→∞(sn − tn) = 0.
But sn − tn = an.

Be careful: there are many series whose general term goes to zero which do not
converge.

Proposition 9.5 for sequences translates to the following for series:

Proposition 9.10. If an = bn + cn, and the series
∑

bn and
∑

cn converge, then so does the
series

∑
an, and ∑

an =
∑

bn +
∑

cn .

172



Absolute Convergence

There are new difficulties when we have to consider series including negative as well as positive
terms. For example, although the series

∑
1/n diverges (as we’ll see below, example 9.16), if we

alternately change signs, the series converges.

Example 9.12. The series

1− 1
2

+
1
3
− 1

4
+ · · · =

∞∑
n=1

(−1)n+1

n
converges.

To see this, we start by looking at the sequences of even partial sums and odd partial sums
separately. Since

s2(n+1) = s2n +
1

2n + 1
− 1

2n + 2
> s2n

the sequence of even partial sums is increasing. Similarly,

s2(n+1)+1 = s2n+1 −
1

2n + 2
+

1
2n + 3

< s2n+1

tells us that the sequence of odd partial sums is decreasing. Now

(9.5) s2n+1 = s2n +
1

2n + 1
> s2n ,

that is, the odd partial sums are all greater than all the even partial sums. So both sequences are
monotonic and bounded, and thus converge. But, they converge to the same limit, as we see by
taking the limits in the expression (9.5):

lim
n→∞

s2n+1 = lim
n→∞

s2n + lim
n→∞

1
2n + 1

= lim
n→∞

s2n ,

since 1/(2n+1 → 0. Since the sequences of even partial sums and that of odd partial sums converge
to the same limit, the full sequence also converges, and to the same limit.

This argument actually generalizes to any alternating series, a series whose terms alternate in sign.

Proposition 9.11. If an is a decreasing sequence, and limn→∞ an = 0 then the series

∞∑
n=1

(−1)nan

converges.

Definition 9.4 Given a sequence an, we say the series
∑

an converges absolutely if, for the series
formed of the absolute values |an|, we have convergence:

∑
|an| < ∞.

Proposition 9.12. If a series converges absolutely, it converges. That is,

if
∑

|an| < ∞ , then
∑

an converges.
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To see that, let sn be the nth partial sum of the sequence, pn the sum of all the positive terms
making up sn, and qn the sum of the absolute values of all the negative terms. Then

sn = pn − qn .

Both sequences pn and qn are increasing, and bounded by
∑
|an|, so converge, to, say p, q respec-

tively. Then ∑
an = lim

n→∞
sn = lim

n→∞
pn − lim

n→∞
qn = p− q .

Problems 9.2

Does the series converge? If it does, try to find the sum.

1.

∞∑
n=1

5n

8n+1

2.
∞∑

n=1

5n

8n + 1

3.
∞∑

k=1

1
(2k)(2k + 2)

4.
∞∑

n=1

(−1)n n

n + 21

5.

∞∑
n=1

n

2n

Do these series converge:

6.

∞∑
0

(−1)3n+1 n2

n3 − (−1)n
.

7.
∞∑
0

2n + 3n+1

6n
.

8. Let an be a sequence of positive numbers. Show that if
∑

an converges then
∑

a2
n converges.
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9.3 Tests for Convergence

Throughout this section, unless otherwise specified, we will be considering series, all of whose terms
are positive. For such a series, the sequence of partial sums is increasing. If they remain bounded,
then, by proposition 9.6, the sequence of partial sums will converge.

Proposition 9.13. If ak ≥ 0 for all k, and there is an M > 0 such that

n∑
k=0

ak ≤ M for all n ,

then
∞∑

k=0

ak converges .

Because of this proposition, for a series with positive terms, the statements
∑

ak converges,
∑

ak

diverges, are usually written simply as

(9.6)
∞∑

k=0

ak < ∞ (converges) ,

∞∑
k=0

ak = ∞ (diverges) .

Here is an important application of this proposition:

Proposition 9.14. (Comparison Test). Given two sequences ak, bk with 0 ≤ ak ≤ bk. Then

(a) if
∑

bk < ∞ , then
∑

ak < ∞ ,

(b) if
∑

ak = ∞ , then
∑

bk = ∞ .

As for (a), the sequence of partial sums of sn =
∑n

0 ak is bounded by
∑∞

0 bk, so converges by
Proposition 9.13. In the second case, since the sequence of partial sums

∑
ak has no bound, neither

does the sequence of partial sums of
∑

bk.

It is important to observe that it is not necessary that the inequalities in the hypothesis of propo-
sition 9.14 hold for all k, only that they eventually hold. That is because the issue of convergence
series is determined by the end of the series, and not affected by any finite number of terms.

Example 9.13.
∑ 1

rk(r + 1)
< ∞ if 0 < r < 1.

Since rk+1 < rk(r + 1),
1

rk(r + 1)
<

1
rk+1

,

so the comparison test applies.

Example 9.14.
∑ k

rk
< ∞ if r > 1.
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Now, here the trouble is that the numerator grows without bound - but it doesn’t grow as fast a
power. So, what we do is borrow something from the denominator to compensate for the numerator.
We note that eventually k/rk/2 < 1; in fact, this is true as soon as k > 2 ln k/ ln r (which eventually
happens, since k/ ln k →∞). Then for all k larger than this number

k

rk
=

k

(
√

r)k

1
(
√

r)k
<

1
(
√

r)k
.

Since r > 1, we also have
√

r > 1, and so the series∑ 1
(
√

r)k

converges, and thus, by comparison, our original series converges.

Example 9.15.
∞∑

n=0

1
n2

< ∞ .

Now,
1
n2

<
1

n(n− 1)
=

1
n− 1

− 1
n

,

so our series is dominated by a telescoping series which converges (see example 9.11 above).

A very useful application of the comparison test is the following.

Proposition 9.15 (The Integral Test). Suppose that f is a nonnegative, nonincreasing function
defined on an interval [M,∞). Suppose the an is a sequence such that for n > M , an = f(n).
Then

(a) if
∫ ∞

M

f(x)dx < ∞ then
∞∑

n=0

an < ∞ ,

(b) if
∫ ∞

M

f(x)dx = ∞ then
∞∑

n=0

an = ∞ .

Let

bn =
∫ n+1

n

f(x)dx .

Then, since the function is nonincreasing, f(n) ≥ bn ≥ f(n+1); that is an ≥ bn ≥ an+1 . Now, use
the comparison theorem. For example, if

∫
f(x)dx < ∞, then

∑
bn converges, so by comparison∑

an+1 also converges.

Example 9.16 (The harmonic series).

∞∑
n=1

1
n

= ∞ .
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We apply the integral test using the function f(x) = 1/x. Since∫ ∞

1

dx

x
= ∞ ,

as we saw in chapter 8, the result follows.

If we apply example 8.17 to series via the integral test we have a result which is very useful for
comparisons:

Proposition 9.16. Let p be a positive number.

(a)
∞∑

n=1

1
np

< ∞ if p > 1

(b)
∞∑

n=1

1
np

= ∞ if p ≤ 1

This follows from the facts (example 8.17):∫ ∞

1

dx

xp
< ∞ if p > 1 and = ∞ if p ≤ 1 .

Example 9.17.

∞∑
n=2

1
n(lnn)p

.

The function f(x) = 1/x(lnx)p is decreasing. We integrate using the substitution u = ln x:∫ A

2

dx

x(lnx)p
=

∫ ln A

ln 2

du

up
.

We know (again from example 8.17) that this converges if p > 1, and otherwise diverges. Thus, by
the integral test,

∞∑
n=2

1
n(lnn)p

< ∞ if p > 1 ,

and otherwise diverges.

We now turn to a tool to test for convergence when we cannot realize the general term of the series
in the form f(n) for some function f . For example, if the expression for an involves the factorial,
we proceed to the following.

Proposition 9.17. (Ratio Test). Given the series
∑

an, consider

lim
an+1

an
= L ,
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if the limit exists. If L < 1, the series converges; if L > 1, the series diverges. For the case L = 1,
we can draw no conclusion.

Suppose that L < 1. Then there a number r with L < r < 1 such that eventually an+1/an < r.
That is, there is an integer N such that an+1/an < r for all n ≥ N . We conclude

aN+1 < aNr , aN+2 < aN+1r < aNr2 , aN+3 < aN+2r < aNr3 ,

and so forth. Thus, we have, for all k ≥ 1, aN+k < aNrk, so by comparison with the geometric
series, our series converges.

If on the other hand, L > 1, there is a number r, L > r > 1, such that eventually an+1/an > r.
Following the same argument but with the inequalities reversed, we conclude that for all k ≥ 1,
aN+k/aNrk, so we have divergence by comparison with the geometric series. We can conclude
nothing if L = 1. This is the case for the all the series of the type

∑
1/np, and as we have seen,

for some p we get convergence, and divergence for other p.

Example 9.18.

∞∑
n=1

an

n!
.

We try the ratio test.
an+1

an
=

an+1

(n + 1)!
n!
an

=
a

n + 1
→ 0

as n →∞, so the ratio test gives us convergence.

Example 9.19.
∞∑

n=1

n2xn converges for − 1 < x < 1 .

Here we use the ratio test for the absolute values;

|an+1|
|an|

=
(n + 1)2|x|n+1

n2|x|n
= (

n + 1
n

)2|x| → |x| .

Thus, we get convergence for x of absolute value less than 1.

Example 9.20.
∞∑

n=1

2nn3

3n
.

Try the ratio test:
an+1

an
=

2n+1(n + 1)3

3n+1

3n

2nn3
=

2
3
(n + 1

n
)3 → 2

3

so we have convergence.

Example 9.21.
∞∑

n=1

rn .
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Here the ratio test gives
an+1

an
= r ,

so we conclude that the series converges if r < 1, and diverges if r > 1. This may seem to be a
simplification of proposition 9.8, but in fact it is a fraud. The argument is circular, for we have
used proposition 9.8 to derive the ratio test.

Notice that we didn’t really need to know that the limit of an+1/an exists, only that eventually
these ratios are either less than some number less than 1 to conclude convergence, or greater than
some number greater than 1, for divergence.

Problems 9.3

For each problem, determine whether or not the series converges or diverges. Give your reasoning.

1.
∞∑

n=1

n + 1
n3

2.

∞∑
n=2

(n + 1)2

n3 lnn

3.
∞∑

n=1

2n

n!

4.
∞∑

n=1

ne

en

5.
∞∑

n=1

n5/2

n4 − n3 + n2 + 1

6.
∞∑

n=1

n!n
(2n)!

7. Σ∞n=1

n2 + 1
n3
√

n

8.
∞∑

n=1

lnn

n2
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9.
∞∑

n=1

2nn3

n!

10. For what positive integers k (if any) does the following series converge? Give your reasoning.

∞∑
n=1

k!(n− k)!
n!

9.4 Power series

Definition 9.5. A power series is a series of the form

(9.7)
∞∑

n=0

an(x− c)n .

The point c is called the center of the power series.

A power series defines a function on the set of points for which it converges by

f(x) =
∞∑

n=0

an(x− c)n .

The series provides an effective way of approximately evaluating the function f ; our goal in these
last sections is to show that the transcendental functions we’ve come across do have a power series
representation. We can use the ratio test to determine the question of convergence. We take the
ratio of successive terms of (9.7):

|an+1||x− c|n+1

|an||x− c|n
=
|an+1|
|an|

|x− c| → L|x− c| ,

if the limit L = limn→∞ |an+1|/|an| exists. In this case the series converges absolutely for |x− c| <
1/L, and diverges for |x− c| > 1/L. It can be shown that, in general, even if the limit of the ratio
of successive coefficients doesn’t exist, there is an interva, say of radius R, l centered at c in which
the power series converges absolutely, and diverges outside that interval. R may be zero, in which
case the series converges only for x = c, or we may have R = ∞ in which case the series converges
for all real numbers. For other values of R, what happens at the endpoints of the interval needs
to be determined independently. R is called the radius of convergence of the power series.

Proposition 9.18. Given the power series representation

f(x) =
∞∑

n=0

an(x− c)n ,

there is a number R, 0 ≤ R ≤ ∞ such that we get absolute convergence for all x, |x− c| < R, and
divergence for all x, |x− c| > R. We have this value of R:

lim
n→∞

|an+1|
|an|

=
1
R

,
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if the limit exists.

The first example of a power series representation is that of the geometric series:

Example 9.22.

∞∑
n=0

xn =
1

1− x
for |x| < 1

has the radius of convergence R = 1 (recall proposition 9.8).

Example 9.23.

∞∑
n=0

nkxn converges for |x| < 1

for any number k. We use the ratio test. The ratio of successive coefficients

(n + 1)k

nk
= (

n + 1
n

)k → 1

as n →∞.

Example 9.24.
∞∑

n=0

xn

n!
has radius of convergence R = ∞ .

Using the ratio test:
1

(n + 1)!
/ 1

n!
=

1
n + 1

→ 0 ,

so R = ∞, and the series converges for all x. On the other hand, the ratio test shows us that the
series

∞∑
n=0

n!xn

has radius of convergence R = 0, so converges only for x = 0.

Power series, like the geometric series, converge quite rapidly. To illustrate this, consider the series

∞∑
n=0

1
n!

.

By example 9.24, this converges, and as we shall see in example 9.29, the sum is e. We now see
how close to e the sum of the first k terms brings us. The difference between e and this sum is the
sum of the remaining terms

∞∑
n=k

1
n!

=
∞∑

m=0

1
(m + k)!

,

by the substitution n = m + k. Now (m + k)! ≥ m!k!, since (m + k)! is m! times k terms, each of
which is greater than the corresponding term in k!. Thus

∞∑
n=k

1
n!
≤

∞∑
m=0

1
k!m!

=
1
k!

∞∑
m=0

1
m!

=
e

k!
.
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So, for example,

1 + 1 +
1
2

+
1
6

+
1
24

is within 3/120 of e (using the simple estimate e ≤ 3).

Newton thought of power series as “generalized polynomials” - that is, as polynomials, only longer.
This is justified, because we can operate with power series just as we operate with poynomials: we
can add, multiply, and substitute in them by doing so term by term.

Example 9.25.
x

1− x
=

∞∑
n=0

xn+1 for R < 1 .

For
x

1− x
= (x)

1
1− x

= x(1 + x + x2 + x3 + · · ·) = x + x2 + x3 + x4 + · · ·

Example 9.26.
1

1− x2
=

∞∑
n=0

x2n ,
1

1 + x2
=

∞∑
n=0

(−1)nx2n for |x| < 1 .

To see the first, we note that 1/(1−x2) is obtained from 1/(1−x) by substituting x2 for x. Thus,
the power series representation is obtained in the same way. In the second, we have substituted
−x2 for x.

Example 9.27. Find a power series expansion for 1/(5− 2x) centered at the origin. What is its
radius of convergence?

To solve a problem like this, we have to relate the function to another function, whose power series
we know. In this case that would be 1/(1 − x). Now 5 − 2x = 5(1 − (2/5)x), so our function is
obtained from 1/(1−x) by first replacing x by (2/5)x, and then dividing by 5. We follow the same
instructions with the power series.

Start with :
1

1− x
=

∞∑
n=0

xn .

Replace x by (2/5)x :
1

1− (2/5)x
=

∞∑
n=0

(
2
5
x)n .

Divide by 5 and clean up :
1

5− 2x
=

1
5

∞∑
n=0

(
2
5
x)n =

∞∑
n=0

2nxn

5n+1
.

We can calculate the radius of convergence using proposition 9.18, or we can reason as follows:
since the series we started with converges for |x| < 1, our final series converges for |(2/5)x| < 1, or
|x| < 5/2.

Finally, we can also integrate and differentiate power series term by term:
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Proposition 9.19. Suppose that f(x) =
∑∞

n=0 anxn has radius of convergence R. Then∫ x

0

f(t)dt =
∞∑

n=0

an

n + 1
xn+1 ,

f ′(x) =
∞∑

n=1

nanxn−1 ,

and both have the same radius of convergence, R.

Example 9.28. arctanx =
∞∑

n=0

(−1)n

2n + 1
x2n+1 .

We know that the derivative of the arc tangent is 1/(1+x2). Now, in example 9.26, we have already
found the power series representation of that function, so we obtain the power series representation
of arctanx by integrating term by term.

Example 9.29. ex =
∞∑

n=0

xn

n!
for all x .

Let f(x) =
∑∞

n=0 xn/n! Then, differentiating term by term, we find

f ′(x) =
∞∑

n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
,

where the last equation is obtained by replacing the index n by n + 1. Thus f ′(x) = f(x), so
satisfies the differential equation, y′ = y, defining the exponential function. Since f(0) = 1 also, it
is the exponential function.

Example 9.30. e−x2
=

∞∑
n=0

(−1)n x2n

n!
for all x .

Just replace x in example 9.29 by −x2.

Problems 9.4

In problems 1-5 find the radius of convergence of the series:

1.
∞∑

n=1

2n

(n + 1)!
xn

2.

∞∑
n=1

n

3n
xn

3.
∞∑

n=0

n(n− 1)(n− 2)(
x

3
)n
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4.
∞∑

n=1

(2n)!
(n!)2

xn

5.
∞∑

n=1

(n + 1)(n + 2)(n + 3)
n!

xn

6. Let

f(x) =
∞∑

n=0

(n + 2)(n + 1)
n!

xn .

Find a formula for the function f .

7. We know that for r > 0, r < 1,
∞∑

n=0

rk =
1

1− r
.

Show that the error made in summing just the first k + 1 terms is at most rk+1/(1− r).

8. Does the series converge or diverge? Give your reasoning.

a)
∞∑

n=1

n2 + 1
n4 − n2 + n

.

b)
∞∑

n=1

n!
en

c)
∞∑

n=1

ecos(nπ)

n2

9. a) Let f(x) =
∑∞

n=0(2
n − 1)xn. What is the radius of convergence of the series?

b). Write f(x) in closed form (that is, as an algebraic expression).

9.5 Taylor series

Finally we tackle the question: how do we find the power series representation of a given function?
Recalling that the purpose of the power series is to have an effective way to approximate the values
of a function by polynomials, we turn to that question: what is the best way to so approximate a
function? We start with a function f that has derivatives of all orders defined in an interval about
the origin. To begin with, we recall the definition of the derivative in this context:

lim
x→0

f(x)− f(0)
x

= f ′(0) .
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If we rewrite this as

lim
x→0

f(x)− (f(0) + f ′(0)x)
x

= 0 ,

we see that the linear function y = f(0) + f ′(0)x approximates f(x) to first order: f(0) + f ′(0)x is
closer to f(x) than x is to zero, and by an order of magnitude. We now ask, can we find a quadratic
polynomial which approximates f to second order? Let y = a + bx + cx2 be such a polymomial.
Then we want

lim
x→0

f(x)− (a + bx + cx2)
x2

= 0 .

We calculate this limit using l’Hôpital’s rule. First of all, for l’Hôpital’s rule to apply, we have to
have a = f(0). Then

lim
x→0

f(x)− (f(0) + bx + cx2)
x2

=l′H lim
x→0

f ′(x)− (b + 2cx)
2x

.

We can apply l’Hôpital’s rule again, if we have b = f ′(0):

lim
x→0

f(x)− (f ′(0) + 2cx)
2x

=l′H lim
x→0

f ′′(x)− 2c

2
= 0

if c = f ′′(0)/2. We conclude that the polynomial

f(0) + f ′(0)x +
f ′′(0)

2
x2

approximates f to second order: this is closer to f(x) than x is to 0 by two orders of magnitude.
Furthermore, it is the unique quadratic polynomial to do so.

We can repeat this procedure as many times as we care to, concluding

Proposition 9.19. The polynomial which approximates f near 0 to nth order is

f(0) + f ′(0)x +
f ′′(0)

2
x2 + · · ·+ f (n)(0)

n!
.

Of course we can make the same argument at any point, not just the origin. To summarize:

Definition 9.6. Suppose that f is a function with derivatives at all orders defined in an interval
about the point c. The Taylor polynomial of degree n of f , centered at c is

(T (n)
c f)(x) =

n∑
k=0

f (k)(c)
k!

(x− c)k .

Proposition 9.20. The Taylor polynomial T
(n)
c f is the polynomial of degree n which approximates

f near c to nth order.

So, we can compute effective approximations to the values of f(x) near c by these Taylor polyno-
mials; but the question is, how effective is this? More precisely, what is the error? We use this
estimate:
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Proposition 9.21. Suppose that f is differentiable to order n + 1 in the interval [c − a, c + a]
centered at the point c. Then the error in approximating f in this interval by its Taylor polynomial
of degree n, T

(n)
c f is bounded by

(9.8)
Mn+1

(n + 1)!
|x− c|n+1 ,

where Mn+1 is a bound of the values of f (n+1) over the interval [c − a, c + a]. To be precise, we
have the inequality

|f(x)− Tn
c f(x)| ≤ Mn+1

(n + 1)!
|x− c|n+1 .

In the first section of the next chapter we will show how the error estimate is obtained, and see
how to work with it. What we want now is to concentrate on the representation by series.

Definition 9.7. Let f be a function which is differentiable to all orders in a neighborhood of the
point c. The Taylor series for f centered at c is

Tcf(x) =
∞∑

n=0

f (n)(c)
n!

(x− c)n

If c is the origin, this series is called the Maclaurin series for f .

Proposition 9.22. Suppose that f is a function which has derivatives of all orders in the interval
(c− a, c + a). Let Mn be a bound for the nth derivative of f in the interval. If the sequence

(9.9)
Mn

n!
|x− c|n → 0,

converges to zero for all x in the interval, then f is given by its Taylor series:

f(x) =
∞∑

n=0

f (n)(c)
n!

(x− c)n

in (c− a, c + a).

This gives us another way of seeing that ex has the Maclaurin series

ex =
∞∑

n=0

xn

n!
,

since the nth derivative of ex is still ex, and its value at x = 0 is 1. By a parallel calculation we
obtain the power series representation of ex centered at any point:

Example 9.31. For c any point, the function ex has the Taylor series representation centered at
c:

ex =
∞∑

n=0

ec

n!
(x− c)n .
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We do have to verify that the remainders converge to zero, that is, the terms (9.9) converge to
zero. Since ex is an increasing function, its maximum in the interval [a− c, a + c] is at x = a + c,
so we can take Mn = ea+c. Then, for the exponential function we have

lim
n→∞

Mn

n!
|x− c|n = ea+c lim

n→∞

|x− c|n

n!
= 0

by example 9.6.

It is useful to make the following observation

Proposition 9.22. Suppose that f has a power series representation:

(9.10) f(x) =
∞∑

n=0

an(x− c)n .

Then, this is its Taylor series. More precisely:

an =
f (n)(c)

n!
.

This is easy to see; if we differentiate (9.10) k times we obtain:

f (k)(x) =
∞∑

n=k

n(n− 1) · · · (n− k)an(x− c)n−k .

Now, let x = c: only the first term remains since all terms but the first have the factor x− c. Thus
we obtain f (k)(c) = k!ak,

So, if we have found a power series representative of a function, then that is automatically the
Taylor series for the function.

Example 9.33. Find the Maclaurin series for the function f(x) = 1 − x + 5x2 − x3. Since a
polynomial is already expressed as a sum of powers of x, that expression is a power series, and
thus the Maclaurin series for the polynomial.

Example 9.34. Find the Taylor series centered at c = 1 for the function f(x) = 1− x + 5x2− x3.
We have to find the values of the derivatives of f at c = 1:

f(1) = 4 ,

f ′(x) = −1 + 10x− 3x2 , so f ′(1) = 6 ,

f ′′(x) = 10− 6x , so f ′(1) = 4 ,

f ′′′(x) = −6 , so f ′(1) = −6 ,

and all higher derivatives are zero. Thus the Taylor series is

f(x) = 4 + 6(x− 1) +
4
2!

(x− 1)2 − 6
3!

(x− 1)3 = 4 + 6(x− 1) + 2(x− 1)2 − (x− 1)3 .
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We can find the Maclaurin series for many functions, so long as we know how to differentiate them.
Following is a list of some important Maclaurin series.

Proposition 9.23.

(a)
1

1− x
=

∞∑
n=0

xn, |x| < 1

(b) ex =
∞∑

n=0

xn

n!

(c) cos x =
∞∑

n=0

(−1)n

(2n)!
x2n

(d) sinx =
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1

(e) arctanx =
∞∑

n=0

(−1)n

2n + 1
x2n+1

We have already seen how to get (a), (b and (e). For the trigonometric functions, we proceed as
follows. First, the cosine:

f(0) = 1 ,

f ′(x) = − sinx , so f ′(1) = 0 ,

f ′′(x) = − cos x , so f ′(1) = −1 ,

f ′′′(x) = sin x , so f ′(1) = 0 .

f (iv)(x) = cos x , so f(iv)(1) = 1 .

Thus, up to four terms we have

cos x = 1− x2

2!
+

x4

4!
+ · · · .

But, now, since we have returned to cos x, the cycle {1, 0,−1, 0} repeats itself again and again. We
conclude that

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
· · · .,

which can be rewritten as (c) of proposition 9.23.

As another example, we calculate the Taylor series for lnx for x near 1, using the fact that lnx is
the integral of 1/x. Start with the geometric series

1
1− t

=
∞∑

n=0

tn for |t| < 1 .
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Substitute x = 1− t:

1
x

=
∞∑

n=0

(1− x)n =
∞∑

n=0

(−1)n(x− 1)n for |x− 1| < 1 .

Integrate for the final result:

lnx =
∞∑

n=0

(−1)n (x− 1)n=1

n + 1
for |x− 1| < 1 .

Problems 9.5.

1. Find the Taylor series centered at the origin for the function

F (x) =
∫ x

0

dt

1− t4
.

2. Find the Taylor series centered at the origin for the antiderivative (indefinite integral) of

f(x) =
e−x2 − 1

x
.

3. Find the Taylor series centered at the origin for the function∫ x

0

1 + t2

1− t2
dt .

4. Find the Taylor series centered at the origin for the function

1
(1− x2)2

.

5. Find the Taylor expansion of x3 centered at the point -1.

6. Find the Taylor series centered at the origin for the function

coshx =
ex + e−x

2

7. Find the first 5 coefficients of the Maclaurin series for f(x) = ex cos x.

8. Expand f(x) = 1 + x− 3x2 + x9 in a Maclaurin series.

9. For the Maclaurin series expansion:

t

2− t2
=

∞∑
n=0

antn

find the values of a0, a1, a2, a3.
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10. Since the concept of convergence of a power series depends only on the notion of the distance
between two numbers a, b, given by the absolute value |a − b|, we can consider series defined for
complex numbers:

∞∑
n=0

anzn where z = x + iy

with x and y real numbers, i =
√
−1 and |z| =

√
x2 + y2. With this definition we see (with the

same proof) that the series
∞∑

n=0

zn

n!

converges for all z. This we call the complex exponential ez. Show that, for real numbers x:

eix = cos x + i sinx .
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X. Numerical Methods

10.1 Taylor Approximation

Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has
derivatives of all orders near c. In section 5 of chapter 9 we introduced the Taylor polynomials for
f :

Definition 10.1. The Taylor polynomial of degree n of f , centered at c is

(T (n)
c f)(x) =

n∑
k=0

f (k)(c)
k!

(x− c)k .

We saw, in section 9.5, that the Taylor polynomial of degree n is for the best approximation near
c to f by a nth degree polynomial. We recall that fact:

Proposition 10.1. The Taylor polynomial T
(n)
c f is the polynomial of degree n or less that

approximates f near c to nth order.

This statement is not very useful without some estimate of the error bar in this approximation.
This was stated in the preceding chapter without proof as:

Proposition 10.2. Suppose that f is differentiable to order n + 1 in the interval [c − a, c + a]
centered at the point c. Then the error in approximating f in this interval by its Taylor polynomial
of degree n, T

(n)
c f is bounded by

(10.1)
Mn+1

(n + 1)!
|x− c|n+1 ,

where Mn+1 is a bound of the values of f (n+1) over the interval [c − a, c + a]. To be precise, we
have the inequality

|f(x)− Tn
c f(x)| ≤ Mn+1

(n + 1)!
|x− c|n+1 for all x between c− a and c + a .

Before demonstrating how to use this estimate, let us see how it comes about. To simplify the
notation, we shall take c to be the origin. First, a preliminary step:

Lemma. Suppose that f(0) = 0, f ′(0) = 0, . . . , f (n)(0) = 0. Then

|f(x)| ≤ Mn+1

(n + 1)!
|x|n+1 .

First we show the case n = 1. We have |f ′′(s)| ≤ M2 for all s, 0 ≤ s ≤ x. So, for any t, 0 ≤ t ≤ x,
we have

|f ′(t)| = |
∫ t

0

f ′′(s)ds| ≤
∫ t

0

|f ′′(s)|ds ≤ M2

∫ t

0

ds ≤ M2t .

But now,

|f(x)| = |
∫ x

0

f ′(t)dt| ≤
∫ x

0

|f ′(t)|dt ≤
∫ x

0

M2tdt ≤ M2
x2

2
.
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Of course, the same argument works for x negative, we just have to be careful with the signs.

Now, we show that if we assume the lemma for n − 1 we can show it for n, and then invoke the
principle of mathematical induction. Suppose we have gotten to the (n − 1)th case. Then the
lemma applies (at n− 1) to the derivative f ′; so we know that

|f ′(t)| ≤ Mn+1

n!
|t|n for all t in the interval [−a, a] .

(We have Mn+1 because the nth derivative of f ′ is the (n + 1)th derivative of f). Now we argue
independently on each side of 0: for x > 0:

|f(x)| = |
∫ x

0

f ′(t)dt| ≤
∫ x

0

|f ′(t)|dt ≤
∫ x

0

Mn+1

n!
tndt ≤ Mn+1

n!
tn+1

n + 1
=

Mn+1

(n + 1)!
|x|n+1 .

The argument for x < 0 is the same; just be careful with signs.

Now that the lemma is verified, we go to the proposition itself. Let g = f − T
(n)
c f Then g satisfies

the hypotheses of the lemma. Furthermore, since T
(n)
c f is a polynomial of degree n, its (n + 1)th

derivative is identically zero. Thus g(n+1) has the same bound, Mn+1. Applying the lemma to g,
we have the desired result:

|f(x)− T (n)
c f | ≤ Mn+1

(n + 1)!
|x|n+1 .

If this error estimate converges to 0 as n →∞, then we saw that f is be represented by its Taylor
series:

f(x) =
∞∑

n=0

f (n)(c)
n!

(x− c)n

in the interval [c− a, c + a].

Before doing some examples, let’s review what has to be done. To use the Taylor polynomials to
find an approximation to the value to a function within some error bound, we first have to find
bounds Mn for the successive derivatives of the function. Then we have to calculate the values of

(10.2)
Mn

n!
|x− c|n

for successive values of n until we have found one which is within the desired error. Then we
calculate using the Taylor polynomial of degree n− 1.

Example 10.1. Find
√

e to within an error of 10−4.

This is e1/2, so we look at the function f(x) = ex. Since f (n)(x) = ex for all n, and the value
x = 1/2 is within 1 of 0, we can use the Maclaurin series for ex and the bounds Mn = e1. Since 3
is more manageable than e, we take Mn = 3. Now we estimate the error (10.2) at stage n which
we’ll call E(n). We have, in this example

E(n) =
3
n!

(
1
2
)n .
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n = 1 : E(1) =
3
2

n = 2 : E(2) =
3
2

1
4

n = 3 : E(3) =
3
6

1
8

=
3
48

n = 4 : E(4) =
3
24

1
16

=
3

384

n = 5 : E(5) =
3

120
1
32

= 7.8× 10−4

n = 6 : E(6) =
3

720
1
64

< 10−4

Thus, we have our estimate to within 10−4 by taking the fifth Taylor polynomial:

T 5
0 (ex)(1/2) = 1 +

1
2

+
1
2

1
4

+
1
6

1
8

+
1
24

1
16

+
1

120
1
32

= 1.6487

Example 10.2. Find sin(π/8) to within an error of 10−3.

Here we start with the Maclaurin series for sinx:

sinx = x− x3

6
+

x5

120
+ · · ·

Since the derivatives of sin x alternate between ± sinx and ± cos x, we may take Mn = 1 for all n.
We need to choose n large enough that the Taylor error estimate E(n) satisfies

E(n) =
1
n!

(
π

8
)n <

1
2
10−3 .

n = 1 : E(1) =
π

8
= .3927

n = 2 : E(2) =
1
2
(
π

8
)2 = .077

n = 3 : E(3) =
1
6
(
π

8
)3 = .010

n = 4 : E(4) =
1
24

(
π

8
)4 = .0009

so we need only go to n = 3. The estimate is

T 3
0 (sinx)(π/8) =

π

8
− 1

6
(
π

8
)2 = .3826

or sin(π/8) = .383, correct to three decimal places.

Some Taylor series converge too slowly to get a reasonable approximation by just a few terms of
the series. As a rule, if the series has a factorial in the denominator, this technique will work
efficiently, otherwise, it will not.
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Example 10.3. Use the Maclaurin series

ln(1 + x) =
∞∑

n=1

(−1)n+1 xn

n

to estimate ln(1 + a) for a > 0 to within 4 decimal places.

First we calculate the successive derivatives of f(x) = ln(1+x) to obtain the bounds Mn. We have

f (n)(x) = (−1)n−1(n− 1)!(1 + x)−n

so we can take Mn = (n− 1)!. Thus we need, for x = a:

E(n) =
(n− 1)!

n!
an =

an

n
< 10−4 .

If a = 1/10, then the estimate occurs at n = 4, so the first three terms will do. But if a = 1/2, we
don’t get this inequality until n = 12, so we’ll need 11 terms of the series.

Let’s close this section with a more direct argument for the Taylor estimate, proposition 10.2.
Again we assume that f is differentiable of all orders in the interval [c − R, c + R], and that Mn

is an upper bound of |f (n)(x)| on that interval. We have to treat the cases x ≤ c and x ≥ c
separately. Here we demonstrate the proposition for x in the interval [c, c + R], the case of the left
half interval is the same, but with more care given to signs. First, we show the case n = 0. By the
fundamental theorem of the calculus,

f(x)− f(c) =
∫ x

c

f ′(t)dt .

Since f ′(t) ≤ M1 in that interval,

f(x)− f(c) ≤
∫ x

c

M1dt = M1(x− c) .

We proceed now to the induction step: assume the theorem is true for all functions f and the
integer n − 1. Apply the theorem to the derivative f ′ of f and the integer n − 1. Now, for every
k, the k derivative of f ′ is the (k + 1)st derivative of f , so, in particular, the bound on the nth
derivative of f ′ is Mn+1. The induction hypothesis is this:

f ′(x)−
(
f”(c) + f”(c)(x− c) +

f (3)(c)
2!

(x− c)2 + · · ·+ f (n))(c)
(n− 1)!

(x− c)n−1
)
≤ Mn+1

n!
(x− c)n .

Integrate this inequality from c to x, obtaining

f(x)− f(c)−
(
f”(c)(x− c) + f”(c)

(x− c)2

2
+

f (3)(c)
2!

(x− c)3

3
+ · · ·+ f (n)(c)

(n− 1)!
(x− c)n

n

)
≤ Mn+1

n!
(x− c)n+1

n + 1
,

which is the desired result.
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10.2 Newton’s method

Suppose that we want to estimate the solution of the equation f(x) = 0. If this is a linear equation,
there is no problem: we just look for the point at which the line crosses the x-axis. Newton’s idea
is that, since the tangent line approximates the graph, why not take as the estimate the point at
which the tangent line crosses the x-axis? Well, to make sense of this, let’s start at some value x0

and calculate y0 = f(x0). If that is 0, then we’re through. If not, let x1 be the point at which
the tangent line at (x0, y0) crosses the x-axis. That is our first approximation. If it is not good
enough, replace x0 with x1, and repeat the process, over and over again, until the result is good
enough. Of course, the definition of “good enough” is to be determined by the degree of precision
desired in the context of the problem at hand.

This process is illustrated in figure 10.1.

Figure 10.1

x0 x1 x2xHowever, it doesn’t always work so well, as figure 10.2 shows. The choice f x0 on the left works,
but the choice on the right sets in motin a search for a root that doesn’t exist. The important
point is to start with a decent guess for x0, so that we start in a range of the function where the
concavity of the curve forces convergence of these successive approximations.

Figure 10.2

x0x0 x1x1 x2

( ) = = ( )( ; )195



Newton’s method thus, is a technique for replacing an approximation by a better one. Suppose we
start with the function y = f(x), and have found an approximation x = a, with f(a) (relatively)
close to zero. The slope of the tangent line at x = a is f ′(a), and the equation of the tangent line
is y − f(a) = f ′(a)(x− a). This intersects the x-axis where y = 0, so we have

(10.3) −f(a) = f ′(a)(x− a) which has the solution x = a− f(a)
f ′(a)

We now replace a by this value, and repeat the process. That is, we define a sequence of approxi-
mate solutions (hopefully converging to the root), using (10.3) as the recursion relation:

Newton’s Method. Given the differentiable function y = f(x), define a sequence recursively as
follows:

a0 = a good guess of the solution of f(x) = 0 ,

(10.4) an+1 = an −
f(an)
f ′(an)

.

If the guess is in an interval containing a root, and f ′(x) > 0 or f ′(x) < 0 in that interval, then
the sequence an converges to a solution of f(x) = 0.

The criterion for convergence seems problematic, since we don’t know the root of the equation -
we’re trying to find it. But, ordinarily the relation y = f(x) is one we can graph, and from the
graph we can see if the condition is satisfied, and make a good guess. How do we know when we
are within an error e of the solution? This is a difficult question, and will be discussed in a course
in Numerical Analysis. For our purposes, in the presence of the criterion, we can stop as soon as
they are within e of each other.

Example 10.4. Find
√

8 correct to within 4 decimal places.

Here we want to find the root of the equation f(x) = x2 − 8 = 0. Since f ′(x) = 2x, the criterion
is satisfied so long as x > 0 Let’s start with x0 = 3, since 32 = 9 and 9 is close to 8. The next
estimate is

x1 = 3− 32 − 8
2× 3

= 2.8333

We now use this in the recursion, and continue until we reach stability in the first 4 decimal places:

x2 = 2.8333− (2.8333)2 − 8
2 · 2.8333

= 2.8284

x3 = 2.8284− (2.8284)2 − 8
2 · 2.8284

= 2.8284 ,

which we take as the estimate accurate to 4 decimal places.

Before going on to other examples, we summarize the process: To solve f(x) = 0:
1. Graph y = f(x) to find plausible intervals in which to work.
2. Calculate f ′(x), and determine an interval [a.b] in which f ′(x) does not change sign, but for
which the signs of f(a) and f(b) differ.
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3.. Select a first estimate a0 in [a, b] so that f(a0) is small..
4. Calculate the recursion relation

x′ = x− f(x)
f ′(x)

.

5. Find a1 from a0 by taking x = a0, x′ = a1 in the recursion relation.
6. Repeat step 5 until the successive estimates are no further from each other than the desired
estimate.

Of course, in practice this is all done on the computer. Furthermore, the way the function is
defined may make it difficult, even impossible, to complete some of the steps. In such a case, pick
a starting point as best you can and calculate a number of terms. If they don’t seem to converge,
try another starting point.

Example 10.5. Find the solutions of f(x) = x3 − 12x + 1 = 0 to three decimal places.

First we graph the function so as to make an intelligent first estimate.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-15

-10

-5

5

10

15

Figure 10.3

We have f ′(x) = 3x2−12, so the local maximum and minimum of y = f(x) are at (-2,17), (2, -15).
At x = 0, y = 1, and the graph is as shown in figure 10.3. There are three solutions; one close to
0, another larger than 2, and a third less than -2

First, find the solution near zero. We see from the graph that the derivative is well away from zero
in a range including x = 0 and the solution, so we can take our first estimate to be x0 = 0. Now
we calculate successive estimates:

x1 = 0− 1
−12

=
1
12

= .08333

x2 = .08333− (.08333)3 − 12(.08333) + 1
3(.08333)2 − 12

= .08338 ,

x3 = .08338

so this solution is x = .08338 up to four decimal places.

Now, to find the solution larger than 2, it will not do to take x0 = 2, since the derivative is 0 there.
But if we take x0 = 3, we have f ′(3) = 15, a nice large number, so the recursion should work. We
find

x1 = 3− 33 − 12(3) + 1
3(32)− 12

= 3− −8
15

= 3.5333 ,
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x2 = 3.5333− (3.5333)3 − 12(3.5333) + 1
3(3.5333)2 − 12

= 3.4267

x3 = 3.4215 , x4 = 3.4215 ,

so this is our estimate to four decimal places. In the same way, starting at x0 = −3, we find the
third solution.

Example 10.6. Solve ex = x + 2 to three decimal places.

Here f(x) = ex − x − 2, f ′(x) = ex − 1. Since the derivative is increasing, and greater than 1 at
x = 1, and f(1) < 0, while f(2) > 0, a good first estimate will be any number between 1 and 2.
So, take x0 = 1. The recursion is

x′ = x− ex − x− 2
ex − 1

=
ex(x− 1) + 2

ex − 1
.

We now calculate the successive estimates:

x1 = 1.16395 , x2 = 1.1464 , x3 = 1.1462 , x4 = 1.1462 ,

so this is the desired estimate. Notice that in this range, the derivative is not very large, so that
the convergence is slower than in the preceding examples.

10.3. Numerical Integration

We have learned techniques for calculating definite integrals which are based on finding antideriva-
tives of the function to be integrated. However, in many cases we cannot find an expression for
the antiderivative, and these techniques will not lead to an answer. For example f(x) =

√
1 + x3.

No formula for the integral exists in any integral tables. In such a case, we have to return to the
definition of the integral, and approximate the definite integral by the approximating sums. To
explain this, we first review the definition of the definite integral.

10.4 Definition. Let y = f(x) be a function defined on the interval [a, b]. The definite integral is
defined as follows. A partition of the interval is any increasing sequence

{a = x0 < x1 < · · · < xn−1 < xn = b}

of points in the interval. The corresponding approximating sum is

(10.5)
n∑
1

f(x′i)∆xi

where ∆xi is the length xi − xi−1 of the ith interval, x′i is any point on that interval, and
∑

indicates that we add all these products together (see Figure 10.4).
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Figure 10.4: Approximation to the area under a curve.

a b

y = f (x)
Z ( ) :[ ; ℄( ) = ( � ) ( ) (

If these approximating sums approach a limit as the partition becomes increasingly fine (the lengths
of the subdivisions go to zero), this limit is the definite integral of f over the interval [a, b], denoted∫ b

a

f(x)dx .

Thus, we can approximate a definite integral by the sums (10.5). One way to accomplish this is:
Pick an integer N , and divide the interval [a, b] into N subintervals, all of size (b− a)/N . For each
subinterval, evaluate the function at the right endpoint xi, and form the sum

(10.6)
N∑
1

f(xi)∆xi =
(b− a)

N

N∑
1

f(xi) (Approximating Rectangles)

Example 10.7. Let’s find an approximate value for
∫ 1

0

√
1 + x3dx this way. Let’s divide the

interval into 10 subintervals. Then the sum (7) is

1
10

(
√

1 + (1/10)3 +
√

1 + (2/10)3 +
√

1 + (3/10)3 + · · ·
√

1 + (10/10)3) =

=
1
10

(1.0005 + 1.0040 + 1.0134 + 1.0315 + 1.0607 + 1.1027 + 1.1589 + 1.2296 + 1.3149 + 1.4142) =

= 1.1330 .

Of course these calculations are tedious if done by hand, but, by computer - completely trivial. It
is a good idea to try these using a spreadsheet, because there you get to follow the computation.
If we take more subdivisions, we get a better approximation. For example, if we take N = 100 we
get

1
100

(
√

1 + (1/100)3 +
√

1 + (2/100)3 +
√

1 + (3/100)3 + · · ·
√

1 + (100/100)3) = 1.113528 ,

an apparently better approximation.

Example 10.8. Just to see how well this method is working, let us use it to approximate
∫ 2

1
x1.4dx,

which we know to be (22.4 − 1)/(2.4) = .1.782513 . . .. Let’s first take N = 10. The approximating
sum is

1
10

((1.1)1.4 + (1.2)1.4 + (1.3)1.4 + · · · (2)1.4)
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=
1
10

(1.1427 + 1.2908 + 1.4438 + 1.6017 + 1.7641 + 1.9309 + 2.1020 + 2.2771 + 2.4562 + 2.6390)

= 1.8648 .

For N = 100 we obtain the estimate 1.790712, which is better, but not great.

We can improve this method by improving the estimate in each subinterval. First, note that we
have estimated the integral in each subinterval by the area of the rectangle of height at the right
endpoint. If instead we estimate this area using the trapezoid whose upper side is the line segment
joining the two endpoints (see figure 10.5), it makes sense that this is a better estimate.

Figure 10.5

y = f (x)
a b( � )( ( )+ � ( )+ ( )) (( � )( ( )+ ( )+ ( )+ ( )+ � � �+ ( � )+ (

This comes down to

(10.7)
(b− a)

2N
(f(a) + 2

N−1∑
1

f(xi) + f(b)) (Trapezoid Rule)

Going one step further, we might replace the upper curve by the best parabolic approximation.
For N even, this leads to the rule

(10.8)
(b− a)

3N
(f(a) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 4f(xN−1) + f(b)) (Simpson′s Rule)

Let us now do the above examples using these two rules:

Example 10.9. The calculation of
∫ 1

0

√
1 + x3dx using the Trapezoidal rule and N = 10 gives us

1
20

(1 + 2
(√

1 + (1/10)3 +
√

1 + (2/10)3 +
√

1 + (3/10)3 + · · ·
√

1 + (9/10)3
)

+
√

2) =

=
1
20

(1 + 2
(
1.0005 + 1.0040 + 1.0134 + · · ·+ +1.2296 + 1.3149

)
+ 1.4142) =

= 1.0123 .

Example 10.10. Let’s compare the estimates of
∫ 1

0
x1.4dx with these two new methods.. First,

with N = 10, and the trapezoid rule:

1
20

(1 + 2
(
(1.1)1.4 + (1.2)1.4 + (1.3)1.4 + · · · (1.9)1.4

)
+ 21.4 =
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=
1
20

(1 + 2(1.1427 + 1.2908 + · · ·+ 2.2771 + 2.4562
)

+ 2.6390) =

= 1.78288 (Trapezoid Rule) .

Now Simpson’s rule and N = 10:

=
1
30

(1 + 4(1.1427) + 2(1.2908) + · · ·+ 2(2.2771) + 4(2.4562) + 2.6390)

= 1.782513 (Simpson′s Rule) .

In general, these estimate of a definite integral get better as N gets larger, and the trapezoid rule
is better than the rectangular sums, but not as good as Simpson’s rule, simply because the local
approximations to the curve are better. The question is, of course: how good are these rules: what
is the error for a given N and a given rule? The following proposition gives the estimates (these
are not easy to derive).

10.5 Proposition. Let f be a function defined on the interval [a, b], and let Mn be a bound on the
nth derivative of f in this interval. Then, the approximations to

∫ b

a
f(x)dx using N subdivisions

are correct to within the error E(N) given by:

E(N) =
(b− a)3

12N2
M2 (Trapezoid Rule) ; E(N) =

(b− a)5

180N4
M4 (Simpson′s Rule) .

Example 10.11. Let us calculate the error in the trapezoid estimate for
∫ 1

0

√
1 + x3dx given in

example 10.9. We first have to find a bound on the second derivative. Differentiating twice, we
have

f ′′(x) =
3(2x + x4

2 )
2(1 + x3)3/2

,

which is bounded in [0,1] by 15/4. Since N = 10, the error is less than

13

12(102)
15
4

= .003125,

so the answer 1.0123 of example 10.9 is correct to two decimals.

Example 10.12. Now, let’s calculate the error in the use of Simpson’s rule in example 10, with
N = 10. First we need to bound the fourth derivative of f(x) = x1.4 in the interval [1,2]. A
calculation leads to

|f (4)(x)| = |(−1.6)(−.6)(.4)(1.4)x−2.6| ≤ .5376

Thus the error is bounded by
15

180(10)4
(.5376) < 3× 10−8 ,

telling us that the calculation of example 10.10 is correct in all six decimal places.

Problems, Chapter 10.

1. Since tan(π/6) = 1/
√

3,and therefore, π = 6 arctan(1/
√

3) we can use the Taylor series for the
arc tangent to estimate π. Do this, using the first three nonzero terms.
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2. Since sin(π/6) = 1/2, we can also find π by solving the equation sinx = 1/2. We can ap-
proximate the solution by replacing sin by an approximating Taylor polynomial, and then using
Newton’s method. Do this with the cubic Taylor polynomial for sinx.

3. Find a solution, by Newton’s method, of the equation

x5 − x4 + x3 − x2 = 4

correct to five decimal places.

4. Here is another way of estimating π. We know that

π/4 =
∫ 1

0

dx

1 + x2
.

Estimate this integral by the trapezoid rule, using steps of size 1/10. How many steps should we
take to be sure of an estimate correct to 4 decimal places?

5. Define

J0(x) =
∞∑

n=0

(−1)nx2n

4n(n!)(n + 1)!
.

Evaluate J0(1) correctly to 4 decimal places.

6. Find an estimate for ∫ 2

0

sinx

x
dx

using Simpson’ s rule with N = 20 subdivisions.
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XI. Conics and Polar Coordinates

11.1 Quadratic Relations

A quadratic relation between the variables x, y is an equation of the form

(11.1) Ax2 + Bxy + Cy2 + Dx + Ey = F so long as one of A,B,C is not zero .

If we substitute a number for x, we obtain a quadratic equation in y, which we can then solve
by the quadratic formula. In this way (11.1) defines y as a function of x implicitly, although for
some x there may be two solutions or no solutions. In any event, the set of points in the x, y-plane
satisfying equation (11.1) is a curve. These curves are called conics or conic sections, for they
represent, in suitably chosen coordinates, the curve on a cone in three dimensions cut out by a
plane.

As a first example, consider the equation

(11.2) x2 + y2 = F .

This is the circle of radius
√

F when F > 0, just the origin if F = 0, and has no points if F < 0.

We will see that in general, the curve defined by the quadratic relation (11.1) is one of these three
curves: a) parabola, b) ellipse, c) hyperbola. As we have seen in (11.2), for special values of
the coefficients, there may be no curve. There are other possibilities; for example, the equation
x2 − y2 = a describes a hyperbola if a 6= 0, but if a = 0, we get the two lines x = ±y.

First we list the standard forms of the basic curves. These are standard in the sense that any other
curve given by a quadratic equation is obtained from one of these by moving the curve in the plane
by translating and/or rotating.

The Parabola. The standard form is one of these:

(11.3) y = ax2 , x = ay2

The sign of a determines the orientation of the parabola. This gives us four possibilities, the graphs
of which are shown in figures 11.1-11.4.
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Figure 11.1
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+ =The magnitude of a determines the spread of the parabola: for |a| very small, the curve is narrow,
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and as |a| gets large, the parabola broadens. The origin is the vertex of the parabola. In the first
two cases, the y-axis is the it axis of the parabola, in the second two cases it is the x-axis. The
parabola is symmetric about its axis.

The Ellipse. The standard form is

(11.4)
x2

a2
+

y2

b2
= 1

The values x can take lie between −a and a and the values of y lie between −b and b.

If a > b (as shown in figure 11.5), the major axis of the ellipse is the x-axis, the minor axis is the
y-axis and the points (±a, 0) are its vertices. If a < b (as shown in figure 11.6), the major axis of
the ellipse is the y-axis, the Ax-axis is the minor axis, and the points (0,±b) are its vertices.

Of course, if a = b, the curve is the circle of radius |a|, and there are no special vertices or axes.

Figure 11.5

a�a

b�b

Figure 11.6

a�a

b

�b

If a < b (as shown in figure 11.6), the major axis of the ellipse is they-axis,x = 0 is the minor axis,( ;� )= � = � = ;The Hyperbola. The standard form is one of these:

(11.5)
x2

a2
− y2

b2
= 1

y2

b2
− x2

a2
= 1 ,

corresponding to the graphs (11.7),(11.8) respectively.

The x-axis is the axis of the hyperbola (11.7). The points (±a, 0) are the vertices of the hyperbola;
for x between these values, there corresponds no point on the curve. Similarly for the hyperbola
(11.8), the y-axis is its axis and the points (0,±b) are its vertices.
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The lines
y = ± b

a
x

are the asymptotes of the hyperbola, in the sense that, as x →∞, the curve gets closer and closer to
these lines. We see this by multiplying the defining equation by b2/x2, and consider what happens
as x →∞. For example, using the first equation of (11.5), we get

b2

a2
− y2

x2
=

b2

x2
or

y2

x2
=

b2

a2
− b2

x2
.

Thus, as |x| gets large, the hyperbola approaches the graph of

y2

x2
=

b2

a2

which amounts to the two equations y = ±(b/a)x. The dotted lines of figures 11.7 and 11.8
represent the asymptotes.

Figure 11.7

a�a

Figure 11.8

b�b(� ; )=� ! !Now, let’s return to the general quadratic relation (11.1), with C = 0:

Ax2 + By2 + Dx + Ey + F = 0 ,

and see how to relate the equation to the above standard forms. By completing the square in both
x and y we are led to an equation which looks much like one of the standard forms, but with the

206



center removed to a new point (x0, y0). If C 6= 0, the situation is more difficult: a rotation of the
figure is also required to get it into standard form. We leave that for a later discussion, and here
consider only the case C = 0. First, some examples:

Example 11.1. Let’s graph the curve

3x2 − 30x− y + 73 = 0

We have to complete the square in x. We get

3(x2 − 10x + 25)− y + 73− 75 = 0

which can be rewritten in the standard form

y + 2 = 3(x− 5)2 ,

where the vertex is at (5,-2) rather than the origin (see figure 11.9).

Figure 11.9

a

b
c

= � ;j j ==�( = )
Example 11.2. Graph the curve

9x2 + 4y2 − 18x− 16y = 11

Completing the squares:

9(x2 − 2x + 1) + 4(y2 − 4y + 4) = 11 + 9 + 16 = 36 or

9(x− 1)2 + 4y − 2)2 = 36

which can be rewritten in standard form (with the point (1,2) replacing the origin):

(x− 1)2

22
+

(y − 2)2

32
= 1 .

See figure 11.10.
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Example 11.3. Graph the curve

−5x2 + y2 + 30x + 4y − 46 = 0

Completing the squares:

−5(x2 − 6x + 9) + (y2 + 4y + 4) = 46− 45 + 4 = 5 ,

(y + 2)2

(
√

5)2
− (x− 3)2 = 1 .

See figure (11.11).
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Figure 11.11
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Proposition 11.1. The equation

Ax2 + By2 + Dx + Ey = F

can be put into one of the following forms by completing the square:

a) (parabola) : y − y0 = A(x− x0)2, if B = 0 .

208



The vertex of the parabola is at (x0, y0), and the axis is the line x = x0.

b) (parabola) : x− x0 = C(y − y0)2 if A = 0 .

The vertex of the parabola is at (x0, y0), and the axis is the line y = y0.

c) (ellipse) :
(x− x0)2

a2
+

(y − y0)2

b2
= 1 if A and B are of the same sign .

The center of the ellipse is at (x0, y0), and its axes are the lines x = x0, y = y0.

d) (hyperbola) :
(x− x0)2

a2
− (y − y0)2

b2
= 1 or

(y − y0)2

b2
− (x− x0)2

a2
= 1

if A and B are of different signs. The center of the hyperbola is (x0, y0), and its axes are the lines
x = x0, y = y0.

e) If both A and B are zero, the curve is a line. The following degenerate cases may also result:

A(x− x0)2 + B(y − y0)2 ≤ 0 : no graph or just the point (x0, y0).

A(x− x0)2 −B(y − y0)2 = 0 : two lines crossing at (x0, y0).

Example 11.4. Finally, just to illustrate the situation of a quadratic whose coefficient of xy is
nonzero, we consider the curve xy = 1. This curve is symmetric about the lines y = ±x, and has
the asymptotes x = 0, y = 0. This appears to be a hyperbola with major axis the line x = y.
In fact, if we make the linear change of variables x = u + v, y = u − v, this becomes the curve
u2 − v2 = 1 in the new variables. (This change of variables represents a rotation by 45◦, with a
slight change of scale.) See figure (11.12).

Figure 11.12
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Problems 11.1

In problems 1-4 put the conic in standard form, and find the center and vertices. In the next
section you will learn about foci of the conic sections. After reading that section, return to these
problems and find the foci.

1. y − 8x2 + 32x− 29 = 0

2. 9x2 + 4y2 − 36x + 8y + 4 = 0

3. 4x2 − y2 + 2y = 5

4. x2 − 5y2 − 4x + 10y = 1

5. Find the equation of the parabola with vertex (2,5), axis y = 5 that goes through the point
(4,2).

6. Find the equation of the ellipse with vertices (0,0), (0,10) that goes through the point (4,6).

7. Find the equation of the hyperbola with vertices at (3,0), (1,0) and asymptotes of slope ±5.

In problems 8-10 your are given the equation of a curve C and a point P on the curve. Find the
point of intersection of the tangent line to C at P with the x-axis.

8. x2 + 5y = 0 , (10,−20) .

9. x2 + 4y2 = 16 , (2
√

3, 1) .

10. 4x2 − y2 = 1 , (
√

2/2, 1) .

11.2 Eccentricity and Foci

Curves described by quadratic equations are called the conic sections because they can be visualized
as the intersection of a cone with a plane. We shall now consider another definition, dating from
the ancient Greeks, which leads to important properties of the conics.

Fix a point F and a line L in the plane such that L does not go through F .

Pick a positive number e. We consider the locus C of all points X in the plane such that

(11.6) |XF | = e|XL|

where |XY | means the distance from X to Y . e is the eccentricity of C; F the focus and L the
directrix. Note that the curve C is symmetric about the line through the focus and perpendicular
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to the directrix. This is the axis of the curve. There is one point between F and L on C which is
on this axis; this point is the vertex of C. See figure 11.13.

Figure 11.13
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Figure 11.14
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X (x;y)
F (p;0)L

V

= ( ; )j j= + = j j=p( � ) +p( � ) + = ( + = ) = + :=We now show that if e = 1, C is a parabola, if e < 1, C is an ellipse and if e > 1, C is a hyperbola.
Let’s take the axis of C to be the x axis, and place the vertex at the origin, O. Then the focus is
some point (p, 0); we take p > 0. Since |OF | = p, from (11.6) we find that the directrix is the line
x = −p/e (see figure 11.14).

Now, for a point X = (x, y) on the curve, we have

|XL| = x + p/e and |XF | =
√

(x− p)2 + y2

and so equation (11.6) in coordinates is given by

(11.7)
√

(x− p)2 + y2 = e(x + p/e) = ex + p .

Case e = 1. Squaring both sides we get

x2 − 2px + p2 + y2 = x2 + 2px + p2 simplifying to y2 = 4px .

This of course is the standard form of a parabola. It also locates the focus (at (p, 0)) and the
directrix (the line x = −p) of the parabola.

Proposition 11.2 . The focus of the parabola y2 = ax is a/4 units on one side of the vertex of
the parabola along the axis, and and the directrix intersects the axis a/4 units on the other side.
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Example 11.5. Find the vertex, focus and directrix of the parabola given by the equation

2x2 + 12x− y + 20 = 0

We put the equation in standard form. First we move the terms not involving x to the other side:

2x2 + 12x = y − 20 ,

and then, completing the square, we have

2(x2 + 6x + 9) = y − 20 + 18 , or (x + 3)2 =
1
2
(y − 4) .

Thus the vertex is at (−3, 4), axis of the parabola is the line y = 4 and the parabola opens up (since
4p = 1/2 > 0). We have p = 1/8, so the focus is 1/8=.125 units above the vertex at (-3,4.125) and
the directrix is the line y = 3.875.

Example 11.6. Find the equation of the parabola whose vertex is at (4, 2) and whose directrix is
the line x = −1. Find the focus of this parabola.

Since the directrix is a vertical line, the axis is horizontal, so the equation has the form

(y − 2)2 = 4p(x− 4) ,

since the vertex is at (4, 2). Now p is the distance between the vertex and the directrix, so
p = 4− (−1) = 5. Thus the equation of the parabola is

(y − 2)2 = 20(x− 4) .

The focus is 5 units to the right of the vertex, so is at (9, 2).

Example 11.7. Find the equation of the parabola whose focus is the origin and whose vertex is
at the point (a, 0) with a > 0.

Since both the focus and vertex are on the x=axis, that is the axis of the parabola. Since the
vertex is to the right of the focus, the parabola opens to the left. Thus the equation has the form

y2 = −4p(x− a) ,

where p is the distance between focus and vertex. But that is a, so the equation is

y2 = −4a(x− a) .

Case e 6= 1. Squaring both sides of (11.7) gives us

x2 − 2px + p2 + y2 = e2(x2 + 2px + p2)

which simplifies to

(11.8) (1− e2)x2 + y2 − 2p(1 + e)x = 0
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Thus, if e < 1, this is an ellipse, and if e > 1 this is a hyperbola. Notice, because of symmetry in
the minor axis, ellipses and hyperbolas have two foci; one on each side of the minor axis.

We now want show how to locate the foci of an ellipse (e < 1) given in standard form. Thus we
start by putting (11.8) in standard form, and then compare it to the formula of Proposition 11.1c).
Dividing equation (11.8) by the coefficient of x2 gives us

x2 − 2p

1− e
x +

y2

1− e2
= 0

Now completing the square, we come to

(11.9) (x− p

1− e
)2 +

y2

1− e2
=

p2

(1− e)2

Comparing this to

(11.10)
(x− x0)2

a2
+

(y − y0)2

b2
= 1

we see that the center of the ellipse is at (p/(1− e), 0) and a2 = p2/(1− e)2, b2 = a2(1− e2). Let
c be the distance of the center from the focus. Since the focus is at (p, 0),

c =
p

1− e
− p = p(

1
1− e

− 1) = e
p

1− e
= ea

and c2 = e2a2 = a2 − b2. Summarizing

Proposition 11.3. If an ellipse is in standard form

(11.10)
(x− x0)2

a2
+

(y − y0)2

b2
= 1 ,

with a > b, then the foci of the ellipse are on the major axis, c units away from the center where

c2 = a2 − b2

The eccentricity of the ellipse is given by the equations

b2 = (1− e2)a2 or e = c/a

A similar argument for the case e > 1, the hyperbola, leads to

Proposition 11.4 . If a hyperbola is in standard form

(11.11)
(x− x0)2

a2
− (y − y0)2

b2
= 1

then the foci of the hyperbola are on the major axis, c units away from the center where

c2 = a2 + b2
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The eccentricity of the hyperbola is given by the equations

b2 = (e2 − 1)a2 or e = c/a

Example 11.8. Find the foci of the conic given by the equation

x2 + 4y2 − 2x = 8 .

First, we complete the square to get the equation in standard form:

(x− 1)2

32
+

y2

(3/2)2
= 1 .

This conic is an ellipse centered at (1,0), with major axis the line x = 1, and a2 = 9, b2 = 9/4.
Thus c2 = a2− b2 = 9(3/4), so c = (3/2)

√
3. This is the distance of the foci from the center (along

the major axis), so the foci are at (1± (3/2)
√

3, 0).

Example 11.9. Find the foci of the conic given by the equation

y2 − x2 + 4x = 13 .

Complete the squares, and get the standard form

y2

32
− (x− 2)2

32
= 1 .

This is a hyperbola with center at (2, 0), and major axis the line x = 2. We have c2 = a2 +b2 = 18,
so c = 3

√
2 is the distance of the foci from the center along the line x = 2. Thus the foci are at

(2,±3
√

2. The vertices are at (2,±3).

Example 11.10. Find the equation of the ellipse centered at the origin, with a focus at (2, 0) and
a vertex at (3, 0).

The equation of an ellipse centered at the origin is

x2

a2
+

y2

b2
= 1

we are given a = 3, c = 2. Thus b2 = a2 − c2 = 5, and the equation is

x2

9
+

y2

5
= 1

Problems 11.2.

1. Find the equation of the parabola whose vertex is at (0,2) and focus is the origin.

2. Find the vertex of the parabola with focus at (0,7) and passes through the points (±2, 7) and
(±1, 5).
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3. Find the equation of the parabola with focus at (2,3) and directrix the line y = −1.

4. Find the foci and eccentricity of the ellipse given by the equation

(x− 1)2

4
+

y2

16
= 1 .

5. A hyperbola has vertices at (±3, 0) and foci at (±4, 0). What are the equations of its asymptotes?

6. Find the foci and eccentricity of the hyperbola

(y − 2)2

25
− (x + 1)2

16
= 1 .

7. A hyperbola has asymptotes y − 1 = ±0.8(x + 2). What is its eccentricity?

In each of problems 8 thorugh 10, the curve described depends upon a parameter. Identify the
parameter, and find the equation of the curve in terms of the parameter.

8. A parabola with axis the x-axis and focus at the origin.

9. A hyperbola with foci at (-1,0), (1,0).

10. An ellipse with foci at (-1,0), (1,0).

11. Show that the hyperbola and the ellipse of problems 9 and 10 intersect orthogonally; that is,
at a point of intersection their tangent lines are orthogonal.

11.3 String and Optical Properties of the Conics

We have seen that the parabola can be defined as the locus of points X equidistant from a given
point F and a given line L. The ellipse and the hyperbola have similar definitions.

Proposition 11.5. Given two points F1 and F2 and a number a greater than half the distance
between F1 and F2, the locus of points X such that

(11.13) |XF1|+ |XF2| = 2a

is an ellipse with foci at F1 and F2 and major axis of length 2a.

Choose coordinates so that the points F1 and F2 lie on the x-axis, equidistant from the origin.
Then F1 has coordinates (−c, 0), and F2 has coordinates (c, 0) for some c < a. Let X have the
coordinates (x, y). Then (11.13) becomes√

(x + c)2 + y2 +
√

(x− c)2 + y2 = 2a

Eliminate the radicals to verify that we end up with a quadratic equation which is that of an
ellipse.

We should point out that every ellipse has property (11.13). For there is only one ellipse with
given foci and length 2a of the major axis. So, if we start with a given ellipse, and then construct
the curve satisfying (11.13) with the foci and major axis of the given ellipse, since that curve is an
ellipse, it is the given ellipse.

We have a similar description of the hyperbola:
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Figure 11.17:
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x Proposition 11.6. Given two points F1 and F2 and a positive number a, the locus of points X
such that

(11.13) |XF1| − |XF2| = 2a

is a hyperbola with foci at F1 and F2.

Actually, this is just the branch of the hyperbola which wraps around the focus F2; the other
branch is given by the equation

|XF2| − |XF1| = 2a

The optical properties of the conics follow from these string characterizations. Let’s start with
the parabola. Suppose that the parabola is coated with a light-reflecting material. The rays of a
beam of light originating far away along the axis of the parabola will approach the parabola along
lines parallel to its axis. According to the physics of the situation, the angle of reflection off the
parabola is equal to the angle of incidence. The optical property of the parabola is that these
reflected rays all meet at the focus. See figure 11.15.

Proposition 11.7. Let X be a point on the parabola, and T the tangent line to the parabola at
X. Let LF be the line from the focus to X, and L the line through X parallel to the axis of the
parabola. Then the angle between T and LF is equal to the angle between T and L.

What we want to show, referring to figure 11.15, is that γ = α. From the figure we see that
γ = β − α, so this amounts to showing that β − α = α.

Referring to figure 11.15, the focus-directrix definition of the parabola tells us that LF (the distance
from the point X to the focus F ) is equal to x + c (the distance from X to the directrix). Thus

(11.15) LF = x + c .

Squaring this equation gives us
(x− c)2 + y2 = (x + c)2 .
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Differentiate this equation with respect to arc length and divide by 2 to get

(x− c)
dx

ds
+ y

dy

ds
= (x + c)

dx

ds
.

Now, divide by x + c = LF to get

(11.16)
x− c

LF

dx

ds
+

y

LF

dy

ds
=

dx

ds
.

From figure 11.15, we have

dx

ds
= cos α ,

dy

ds
= sinα ,

x− c

LF
= sinβ ,

y

LF
= cos β ,

so (11.16) becomes

sinβ cos α + cos β sinα = cos α , or cos(β − α) = cos α ,

from which we conclude that β − α = α, as desired.

The optical property of the ellipse is that a ray of light emanating from one focus reflects off the
ellipse so as to pass through the other focus (see figure 11.16).

Proposition 11.8. Let X be a point on the ellipse, and T the tangent line to the ellipse at X.
Let L1 be the line from the focus F1 to X, and L2 the line from the other focus F2 to X. Then
the angle between T and L1 is equal to the angle between T and L2.

What we want to show, referring to figure 11.16, is that β2 + α = β1−α. We start with the string
property, written in the coordinates as shown in the figure:√

(x + c)2 + y2 +
√

(x− c)2 + y2 = 2a

Differentiate with respect to arc length to arrive at

x + c√
(x + c)2 + y2

dx

ds
+

y√
(x + c)2 + y2

dy

ds
+

x− c√
(x− c)2 + y2

dx

ds
+

y√
(x− c)2 + y2

dy

ds
= 0

Now make substitutions of the trigonometric functions, using the figure. We have to be careful: in
our picture dy and x− c are negative, so since the sine and cosine are ratios of lengths, we have

cos β1 = − x− c√
(x− c)2 + y2

sinα =
∣∣dy

ds

∣∣ = −dy

ds
.

Thus our equation becomes

cos β2 cos α + sinβ2(− sinα) + (− cos β1) cos α + sinβ1(− sinα) = 0

or
(cos β2 cos α− sinβ2 sinα)− (cos β1 cos α + sinβ1 sinα) = 0

which is cos(β2 + α)− cos(β1 − α) = 0, so β2 + α = β1 − α as desired.
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The optical property of the hyperbola is that a ray of light emanating from one focus reflects off
the opposite branch of the hyperbola so as to appear to have come from the other focus (see figure
11.17).

Proposition 11.9. Let X be a point on the hyperbola, and T the tangent line to the ellipse at
X. Let L1 be the line from the focus F1 to X, and L2 the line from the other focus F2 to X. Then
the exterior angles between T and L1 and between T and L2 are equal.

The verification is a computation completely analogous to the one for the ellipse: differentiate the
string property, and then make the correct trigonometric substitutions

Problems 11.3

1. Find the point (x, y) on the parabola y2 = 12x for which the line from the focus meets the
tangent line at an angle of 45◦.

2. Give a proof, using the optical properties of the conics that confocal hyperbolae and ellipses
intersect orthogonally. That is, suppose that H and E are respectively a hyperbola and an ellipse,
and suppose that the have the same foci. Show that, at a point P of intersection of H and E that
the curves have tangent lines which are perpendicular.

11.4 Polar Coordinates

Often a problem can be seen as that of understanding the motion of a particle in the plane relative
to a fixed point. In such a situation it is desirable to be able to describe a position in terms of the
length and the direction of the line between the two points. These are the polar coordinates
of the point. We consider the fixed point as the origin of these coordinates, and take the positive
x-axis as the “zero” direction. Then any other direction is described by the angle between it and
the positive x axis, which we denote as θ. The distance of a point on this line from the origin is
denoted r. These equations relate the cartesian coordinates (x, y) with the polar coordinates r, θ:

(11.17) x = r cos θ , y = r sin θ , r =
√

x2 + y2 , θ = arctan
y

x

See figure 11.18 to justify these formulas. Polar coordinates have two pecularities that need to be
pointed out. Every value of (r, θ) determines a point in the plane. However, if r = 0, the point
is the origin, and θ doesn’t make sense. Secondly, the values (r, θ) and (r, θ + 2π), and in fact,
(r, θ + 2nπ) for any n give the same point. This ambiguity is sometimes of value: for example,
when discussing the motion of a particle, n tells us how many times the particle has wound around
the origin in the counterclockwise sense. Finally, it is also of convenience to let r take negative
values, meaning a distance of |r| in the opposite direction of the ray θ. Thus (r, θ) and (−r, θ + π)
determine the same point. We now consider the graphs of equations in polar coordinates.
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Example 11.11. The equation r = a, for a > 0 is satisfied by all points of distance a from the
origin, so is polar equation of the circle of radius a centered at the origin.

Example 11.12. The equation θ = θ0 is the line which makes an angle of θ0 with the x-axis.

Example 11.13. r = aθ describes the motion of a point which rotates around the origin at angular
velocity 1 while moving out along the ray at velocity a. This is the Archimedean spiral; see
figure 11.19.

θaθ

=== =Figure 11.19 Figure 11.20

Example 11.14. r = eaθ is another spiral, however, the point moves out along the ray at a rate
exponential in the rate of rotation. This is the logarithmic spiral, depicted in figure 11.20.
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Example 11.15. The equation r = a cos θ is a the circle of diameter a with center on the x-axis
which goes through the origin. For, if we multiply by r we get r2 = ar cos θ, which can now be
written in cartesian coordinates (using (11.17)) as

x2 + y2 = ax or (x− a

2
)2 + y2 =

a2

4
.

Given an equation of the form r = r(θ), we can often trace out the graph by just studying the
behavior of the function r(θ). Let’s redo example 11.15 this way. We have this table

θ 0 π
4

π
2

3π
4 π 3π

2 2π

r a a
√

2
2 0 −a

√
2

2 −a 0 a

It is useful to follow the point on the curve of figure 11.21 as θ ranges from 0 to 2π. Between 0
and π/2 the point is in the first quadrant, and as the angle increases it moves toward the origin,
reaching there at θ = π/2. Then for θ between π/2 and π, the point is in the fourth quadrant
(because r < 0), steadily moving away from the origin until we reach the point we’ve started with.
This looks like a circle, and the argument above (in example 11.15) shows that it is. Note that as
θ moves from π to 2π the circle is retraced.

Example 11.16. Similarly, the equation r = a cos(θ−θ0) is the circle through the origin of radius
a with center on the ray of angle θ0. This amounts to the assertion that any equation of the form

r = a cos θ + b sin θ

is a circle with the origin the endpoint of one of its diameters (see problem 1 of this section).

a
θ

Figure 11.22

X (x;y)
r θ

F V
d L

Figure 11.21 Figure 11.22
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Example 11.17. If we are given the equation of a curve in cartesian coordinates, we can find its
equation in polar coordinates through the substitution x = r cos θ, y = r sin θ. For example

(11.18) Equation of a line : r =
c

a cos θ + b sin θ
.

For, the general equation of a line is ax + by = c. After substitution this becomes

ar cos θ + br sin θ = c,

which gives us (11.18) when we solve for r.

Example 11.18. The polar equation of a conic of eccentricity e, focus at the origin and directrix
the line x = d is

(11.19) Equation of a Conic : r =
ed

1 + e cos θ
.

To show (11.19), we start with the defining relation |XF | = e|XL|, referring to figure 11.22.

In polar coordinates this gives us

r = e(d− x) = e(d− r cos θ)

Solving for r brings us to (11.19). If the figure is rotated by θ0, we just replace θ with θ − θ0

Example 11.19. r = a cos 2θ. We first construct the table:

θ 0 π
4

π
2

3π
4 π

r a 0 −a 0 a

= � �
Figure 11.23 Figure 11.24
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Follow this discussion along the graph in figure 11.23. This time the curve starts (at θ = 0) at
r = a, and decreases to zero by θ = π/4. Between π/4 and π/2, r is negative, so the curve is
in the third quadrant, and as θ rotates counterclockwise, r moves away from the origin finally to
r = −a for θ = π/2. As θ increases from π/2 the point continues to move toward the origin (in
the fourth quadrant), arriving there at θ = 3π/2. Moving on, r becomes positive, so we enter the
second quadrant with the distance from the origin steadily increasing until, at θ = π we are at
r = a. Since cos θ is an even function, as we move from π to 2π (or what is the same, from −π
to 0), we just get the same curve, reflected in the x-axis. The result is the four-petalled rose
shown here in figure 11.24.

Example 11.20 r = a cos 3θ is a three-petalled rose. Construct the table of important values
between 0 and π and argue as in example 11.19. The table is

θ 0 π
6

π
3

π
2

2π
3

5π
6 π

r a 0 −a 0 a 0 −a

That completes the rose; of figure 11.25; as we proceed from π to 2π we traverse the rose again.

We conclude

Proposition 11.10. The graph of the equation r = a cos(nθ) or r = a sin(nθ) is a 2n-petalled
rose if n is even, and an n petalled rose if n is odd (traversed twice).

Limaçons. These are the curves defined by the equation r = a + b cos θ.

First, we consider the case: a > b. We have the table

θ 0 π
2 π 3π

2 2π
r a + b a a− b a a + b

leading us to figure 11.26.

As b gets closer and closer to a, the value of r for θ = π goes to zero. Thus when a = b, we get the
graph of figure 11.27, called the cardioid.

Then as b goes beyond a, r becomes negative as θ gets near π, and there is an inner loop of the
limaçon.
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Figure 11.27 Figure 11.28
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Example 11.21. r = 2 + 4 cos θ. Our table is this:

θ 0 π
2 π 3π

2 2π
r 6 2 −2 2 6

When cos θ = −1/2, that is, for θ = ±2π/3, the value of r is zero, and between these two values r
is negative.Following these values, we arrive at the graph in figure 11.28.

We have drawn the curve so that it is tangent to the ray θ = ±π/3as the moving point comes to
the origin. As we shall see in the next section, this is correct.

Finally, it is important to note that if the function cos θ is replaced by − cos θ the curve is reflected
in the y-axis, and if it is replaced by ± sin θ, it is rotated by a right angle.

Problems 11.4

1. Show that the graph of the polar equation r = a cos θ + b sin θ is a circle of radius
√

a2 + b2

going through the origin. Where is its center?
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2. Graph r = 3(cos θ +
√

3 sin θ).

3. What is the polar equation of an ellipse, with one focus at the origin, corresponding directrix
the line x = −3 and corresponding vertex at the point (-1,0)?

4. Identify the curve: r = 2 sin(5θ).

5. Graph r2 = cos(2θ). This is called a lemniscate.

11.5 Calculus in polar coordinates

Arc length

Consider the curve given in polar coordinates by the equation r = r(θ). We can calculate the
differential ds of arc length by the differential triangle in polar coordinates using the diagram in
figure 11.29.

dr
ds

rdt

r = r (t)dt r

= +Figure 11.29

The length of the arc of the circle of radius r subtended by the angle dθ is rdθ. The differential
triangle is thus a right triangle with side lengths dr and rdθ. By the pythagorean theorem

(11.20) ds2 = dr2 + r2dθ2

Example 11.22. Find the length of the curve r = θ2 from 0 to 2π .

This curve is a spiral whose distance from the origin increases as the square of the angle. We have
dr = 2θdθ, so

ds2 = dr2 + r2dθ2 = 4θ2dθ2 + θ4dθ2 = θ2(4 + θ2)dθ2

and thus the length is∫ 2π

0

ds =
∫ 2π

0

θ
√

4 + θ2dθ =
1
3
(4 + θ2)3/2)

∣∣2π

0
=

1
3
(4 + 4π2)3/2 − 43/2)
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Area

To caculate the area enclosed by a curve given, in polar coordinates, by r = r(θ), we calculate
the differential of area, using figure 11.30

rdθ

r
dθ

r = r (θ )
= Z � (Figure 11.30

The area of the wedge given by the increment dθ is (1/2)r2dθ. To see this, we start with the
area of the circle of radius r : A = πr2. Now an angle α subtends a segment of the circle which is
the (α/2π)th part of the full circle, thus the area of that segment is (1/2)r2α. Thus, for α = dθ,
we get

(11.21) dA =
1
2
r2dθ

Example 11.23. Find the area enclosed by the cardioid r = 3(1 + sin θ).

The area is

Area =
1
2

∫ 2π

0

[3(1 + sin θ)2]dθ =
9
2

∫ 2π

0

(1 + 2 sin θ + sin2 θ)dθ .

Now, we know that the integral of sin θ over an entire period is zero, so we can neglect the middle
term. We now use the double angle formula for the last term, and drop the integral of cos(2θ) for
the same reason:

Area =
9
2

∫ 2π

0

(1 +
1− cos(2θ)

2
)dθ =

9
2

∫ 2π

0

3
2
dθ =

27
2

π .

Example 11.24. Find the area inside one petal of the rose r = sin 3θ.

At θ = 0 we have r = 0, but then as the angle rotates, r increases to its maximum at 3θ = π/2,
and then decreases back to zero for 3θ = π. Thus one petal is spanned as θ ranges from 0 to π/3.
We now calculate;

Area =
1
2

∫ π/3

0

sin2(3θ)dθ =
1
2

∫ π/3

0

(
1− cos(6θ)

2
)dθ =

1
2
(
θ

2
− cos(6θ)

12

∣∣π/3

0
=

π

12
.
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Tangents

Given the polar equation r = r(θ) of a curve, we can find the tangent at any point as follows. First
of all, the cartesian coordinates are given by x = r(θ) cos θ, y = r(θ) sin θ. If m is the slope of the
tangent line, we have, by the chain rule

(11.22) m =
dy

dx
=

dy/dθ

dx/dθ
=

r cos θ + sin θ dr
dθ

−r sin θ + cos θ dr
dθ

Notice that, as r → 0, the right hand side approaches tan θ. Thus, if θ0 is a value for which r = 0,
then the curve approaches the origin along the ray θ = θ0.

Example 11.25. What is the slope of the tangent to the inner loop of the limaçon

r = 2 + 5 cos θ

at the origin?

First, we find the values of θ for which r = 0:

2 + 5 cos θ = 0 or cos θ = −2
5

so that θ = ±0.63π radians or 113.6◦.
Figure 11.31

r = r (θ )
φ

α
θ

θ

dθ

tan line

= ( ) = ( ) ; = ( )= = == = +� +! =
Figure 11.31

Problems 11.5

1. Find the length of the spiral r = e2θ from θ = 0 to θ = 2π.

2. Find the length of the spiral r = e−θ for θ ≥ 0.

3. Find the area inside the limaçon r = 3 + sin θ.

4. Find the area inside the cardioid r = 1− sin θ and above the x-axis.

5. What is the slope of the spiral r = θ at the points θ = 2πn for n a positive integer? What
about the spiral r = eθ at the same points?

6. Find the tangents to the curve r = 2 + 3 sin θ at the origin.
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XII. Second Order Linear Differential Equations

12.1 Homogeneous Equations

A differential equation is an equation involving variables x, y, y′, y′′, . . .. A solution is a function
f(x) defined in an interval I such that the substitution y = f(x), y′ = f ′(x), y′′ = f ′′(x), . . .
becomes an identity for x in the interval I. The differential equation is said to be linear if it
is linear in the variables y, y′, y′′, . . .. We first encountered solutions of differential equations in
section 4 of Chapter 3, in the context of equations of the form f(y)dy = g(x)dx). In Chapter 6,
section 3 we discussed the solution of first order linear equations (those in which only the variables
x, y, y′ appear). in this chapter we turn to second order linear equations with constant coefficients
(those allowing also a second derivative). The general form of such an equation is

(12.1) y′′ + ay′ + by = g(x) ,

where a and b are constants, and g(x) is a differentiable function of x. In section 6.4, we saw that a
first order equation has a one-parameter family of solutions, and that the specification of an initial
condition y(x0) = y0 uniquely determines a solution. In the case of second order equations, the
basic theorem is this.

Theorem 12.1. Given x0 in the domain of the differentiable function g, and numbers y0, y′0,
there is a unique function f(x) which solves the differential equation (12.1) and satisfies the initial
conditions f(x0) = y0, f ′(x0) = y′0.

In this section we shall see how to completely solve equation (12.1) when the function on the right
hand side is zero:

(12.2) y′′ + ay′ + by = 0 .

This is called the homogeneous equation. An important first step is to notice that if f(x) and
g(x) are two solutions, then so is the sum; in fact, so is any linear combination Af(x) + Bg(x).
Thus, once we know two solutions (they must be independent in the sense that one isn’t a constant
multiple of the other) we can solve the initial value problem in theorem 12.1 by solving for A and
B.

Example 12.1. Solve. y′′ + y = 0 , y(0) = 4 , y′(0) = −1 .

Now, we know that cos x and sinx are solutions of the equation, so we try a solution of the
form y(x) = A cos x + B sinx. Evaluating at x = 0, we find that A = 4. Differentiate, getting
y′(x) = −A sinx + B cos x, and evaluating at x = 0, we find B = −1. Thus the solution is
y(x) = 4 cos x− sinx.

The reason the answer worked out so easily is that y1 = cos x is the solution with the particular
initial values y1(0) = 1, y′1(0) = 0 and y1 = sin x is the solution with y1(0) = 0. y′1(0) = 1 . Then
the solution with initial values y(0) and y′(0) is

(12.3) y(x) = y(0) cos x + y′(0) sinx

Example 12.2. Solve y′′ − y = 0 , with given initial values y(0) , y′(0) .
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Now ex and e−x are solutions of this differential equation, so the general solution is a linear
combination of these. But we won’t have as easy a time finding a solution like (11.3), since these
functions do not have the initial values 1, 0; 0, 1 respectively. However if we introduce the functions

coshx =
1
2
(ex + e−x) sinhx =

1
2
(ex − e−x)

these do have the right initial values:

cosh 0 = 1 , sinh 0 = 0

(12.4)
d

dx
(coshx) = sinhx ,

d

dx
(sinhx) = coshx

so (cosh)′(0) = 0, (sinh)′(0) = 1. Thus, the solution to our problem is

y(x) = y(0) coshx + y′(0) sinhx .

This particular differential equation comes up so often that it is important to remember these
functions, coshx, sinhx, called the hyperbolic functions and their basic properties: equation
(12.4) and

(12.5) cosh2 x− sinh2 x = 1 .

Because of (12.5) these functions parametrize the standard hyperbola (and it is for this reason that
they are called hyperbolic functions).

Using these examples as a guide, we return to the general second order equation.

Proposition 12.2. Let r be a root of the equation

(12.6) r2 + ar + b = 0 .

Then erx is a solution to the homogeneous equation:

(12.7) y′′ + ay′ + by = 0 .

Equation (12.6) is called the auxiliary equation of the differential equation (12.7). To verify the
proposition, let y = erx so that y′ = rerx, y′′ = r2erx. Substituting into equation (12.7):

r2erx + arerx + berx = erx(r2 + ar + b) ,

and this is zero if and only if r is a root of the auxiliary equation.

Now unfortunately a quadratic equation does not necessarily always have two real roots, so we
have to examine the cases separately.

Case of two real roots. If the discriminant a2 − 4b > 0, then there are two real roots, and it is
straightforward to find the solution of the corresponding initial value problem.

Example 12.3. Solve : y′′ + 6y′ + 5y = 0 , y(0) = 4 , y′(0) = −1 .
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The auxiliary equation, r2 + 6r + 5 = 0 has the roots r = −1,−5, so e−x and e−5x are solutions.
The general solution is

y = Ae−x + Be−5x with derivative y′ = −Ae−x − 5Be−5x .

Evaluating at x = 0, we have 4 = A + B, −1 = −A − 5B. Solving this pair of equations, we get
A = 19/4 and B = −3/4, so our solution is

y =
19
4

e−x − 3
4
e−5x

Example 12.4. A function x = x(t) satisfies the differential equation

x′′ − 2x′ − 15x = 0 .

Under what conditions on the values of x at t = 0 will this function decay to 0 as t →∞?

The auxiliary equation r2 − 2r − 15 has the roots r = −3, 5. Thus the general solution is
x(t) = Ae−3t +Be5t. This will decay at infinity only if B = 0. Now, evaluating x and x′ at 0 gives
us the equations

x(0) = A + B , x′(0) = −3A− 5B .

Setting B = 0, the condition becomes x′(0) + 3x(0) = 0.

Case of complex roots. If the discriminant a2−4b < 0, then the roots are two complex conjugate
numbers α + iβ, α− iβ.

Let’s look again at the case y′′ + y = 0. Then the roots of r2 + 1 = 0 are ±i, and we’d like to say
that the solutions are the functions eix, e−ix. This does work, and all the algebra in the case of
real roots works just as well in this case, once we have given these expressions meaning. First of
all, remember equation (12.3): the general solution of y′′ + y = 0 is

(12.8) y(x) = y(0) cos x + y′(0) sinx

If y(x) = eix is to represent a solution of this differential equation, we have y(0) = e0 = 1, and
y′(0) = ie0 = i, so we must have

(12.9) eix = cos x + i sinx

Notice that if we differentiate this expression, we get

− sinx + i cos x = i(cos x + i sinx) ,

so this expression is consistent with the differentiation rule for the exponential:

d

dx
eix = ieix .

In fact, defining the complex exponential by (12.9) is consistent with all the rules of exponentials.
In particular (recall problem 10 of section 9.5), if we substitute the Maclaurin series for all the
functions in (12.9) we get an identity:

∞∑
n=0

(ix)n

n!
=

∞∑
n=0

(−1)n x2n

(2n)!
+ i

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
.
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Proposition 12.3. For a complex number α + iβ if we define the exponential function as

e(α+iβ)x = eαxeiβx = eαx(cos(βx) + i sin(βx)) ,

then all the usual laws of exponents carry through.

Now, of course, we are interested only in real-valued functions. What we have shown is that if α±iβ
are the roots of the equation r2 + ar + b = 0, then the functions e(α±iβ)x solve the differential
equation y′′ + ay′ + b = 0. But then the real and imaginary parts of this function satisfy the
equation as well, which gives us the desired two real-valued solutions.

Proposition 12.4 . If the auxiliary equation for the differential equation

y′′ + ay′ + b = 0

has the complex roots α± iβ, then every solution of the differential equation is of the form

(12.10) Aeαx cos(βx) + Beαx sin(βx) = eαx(A cos(βx) + B sin(βx))

In solving initial value problems, we can work with the complex solutions or solutions of the form
(12.10); usually the latter is more convenient.

Example 12.5. Find the general solution x = x(t) of

x′′ + a2x = 0 .

Since the roots of the auxiliary equation r2 = −a2 = 0 are ±ia, the general solution is

(12.11) x(t) = A cos at + B sin at

It is easy to see what this function looks like by defining

C =
√

A2 + B2, γ = arctan(B/A)

Then (12.11) becomes

x(t) = C(cos γ cos at + sin γ sin at = C cos(at− γ) = C cos a(t− γ/a)) .

Thus the graph of x = x(t) is a simple cosine curve of amplitude C, and period 2π/a, shifted to
the right by the phase γ. (See figure 12.1).

Example 12.6. Find the solution y = y(x) of y′′ + 2y′ + 5y = 0, with initial values y(0) =
2, y′(0) = −1.

The auxiliary equation r2 + 2r + 5 = 0 has the solutions r = −1 ± 2i. Thus the general solution
is y = e−x(A cos(2x) + B sin(2x)). To solve for A and B using the initial values we must first
differentiate y:

y′ = −e−x(A cos(2x) + B sin(2x)) + e−x(−2A sin(2x) + 2B cos(2x)) .
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Substituting the initial values gives the equations A = 2, −A + 2B = −1, which has the solutions
A = 2, B = 1/2. The answer thus is

y = e−x(2 cos(2x) +
1
2

sin(2x)) .

Case of a double root. If the discriminant a2− 4b = 0, then the auxiliary equation has one root
r, which gives us only one solution erx of the differential equation. We find another solution by
the technique of variation of parameters. We try y = uerx, where u is a new unknown function.
Now, since the auxiliary equation has only the single root r, we have a = −2r and b = r2, so the
differential equation can be written as:

y′′ − 2ry′ + r2y = 0 .

Substituting y = uerx in the left hand side, we get

y′′ − 2ry′ + r2y = erx[(u′′ + 2u′r + ur2)− 2r(u′ + ur) + r2u] = erxu′′ .

For this to be zero, we must have u” = 0, so that u = Ax + B.

Proposition 12.5 . If the auxiliary equation for the differential equation

y′′ + ay′ + b = 0

has only the root r, then every solution is of the form

(Ax + B)erx

Example 12.7. Find the solution of y′′ − 4y′ + 4y = 0 with initial values y(0) = 2, y′(0) = −1.

The auxiliary equation has just the root r = 2. The general solution is y = (Ax + B)e2x, with
derivative y′ = 2(Ax + B)e2x + Ae2x. Substituting the initial conditions gives the equations

2 = B − 1 = 2B + A .

Thus A = −5, B = 2 and the answer is

y = (−5x + 2)e2x .

Problems 12.1

1. Solve y′′ − 5y = 0 with the initial values y(0) = 1, y′(0) = −1.

2. Solve y′′ + 5y = 0 with the initial values y(0) = 1, y′(0) = −1.

3. Solve y′′ − 5y′ + 6y = 0 with the initial values y(0) = 1, y′(0) = −1.

4. Solve y′′ + 4y′ + 5y = 0 with the initial values y(0) = 1, y′(0) = −1.

5. Solve y′′ − y′ = 0 with the initial values y(2) = 1, y′(2) = 2.
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6. Solve y′′ + 2y′ + y = 0 with the initial values y(−1) = 1, y(1) = 1.

12.2 Behavior of the Solutions

When these differential equations come up in applications, one usually wants to have some idea
of the long term behavior of the solution. Since the roots of the auxiliary equation determine the
solutions, they also determine their behavior. Here we summarize the results.

Both roots positive. Except for the identically zero solution, all solutions grow exponentially.
See figure 12.2.

Both roots negative. Except for the identically zero solution, all solutions decay exponentially.
See figure 12.3.

Figure 12.2
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A negative and a positive root. All solutions grow exponentially, except for the multiples of
the exponential with the negative root.

Both roots imaginary. In this case the equation is

y′′ + ω2y = 0 ,

As we saw in example 12.5, the general solution can be written as

y(x) = A cos ωx) + B sin(ωx) or y(x) = C cos(ωx− γ) ,

an oscillation of period 2π/ω, amplitude C and phase γ (see figure 12.1).
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Figure 12.1
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Complex roots. In this case the roots are of the form α ± iβ and the general solution can be
written in the form (following the previous discussion)

y(x) = Ceαx cos(ωx− γ) .

Thus if α > 0, this gives an oscillation with exponentially increasing amplitude (figure 12.4), and
if α < 0, this gives an exponentially damped oscillation (figure 12.5).
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Problems 12.2

For each of the following differential equations, find the general solution in terms of the initial
values y(0), y′(0). Give conditions, if any, on the initial conditions for the solution to be bounded.

1. y′′ − 6y′ + 9y = 0 .
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2. ′′ − 6y′ + 5y = 0 .

3. y′′ − y′ + 6y = 0 .

4. y′′ + 4y′ + 13y = 0 .

5. y′′ − 4y′ + 13y = 0 .

6. y′′ + 9y = 0 .

7. y′′ − 9y = 0 .

8. Find the solution of problem 3 with initial values y(0) = 3, y′(0) = −2.

9. Find the solution of problem 4 with initial values y(0) = 0, y′(0) = 1.

12.3 Applications

Springs

Suppose we place a mass m on the end of a vertically hanging spring, and then set it in motion;
how can we describe the subsequent motion? As we have seen in chapter 5, section 4, the spring is
subject to a restoring force proportional to its displacement from equilibrium. By Newton’s second
law of motion, this force is ma, where a is the acceleration of the mass m. Letting x represent the
downward displacement from equilibrium, we have a = x′′, and if the spring constant is k, this
gives us the equation

(12.12) mx′′ = −kx , or x′′ +
k

m
x = 0

Letting ω =
√

k/m, this has the solution (see example 12.5)

x(t) = C cos(ωt− γ)

where C and γ are to be determined by the initial data.

We have to be a little careful about units. In the metric system, when m is measured in kilograms
and x in meters, then force is measured in newtons, and the units for the spring constant k are
newtons/meter. On a smaller scale, m is in grams, x in centimeters, force in dynes, and k in
dynes/meter. However, in the British system it is customary to refer to the weight w of the object
(in pounds), rather than its mass. Then m = w/g, where g = 32 ft/sec2 is the acceleration due to
gravity. Finally, in the British system, the spring constant is given in lbs/foot.

Example 12.8. Suppose a mass of 10 g hangs from a spring with spring constant k = .4 dynes/cm.
If the spring is extended an additional 8 cm. and then released, give the equation of subsequent
motion.
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The initial conditions are that when t = 0, x(0) = 8, x′(0) = 0. We also have ω =
√

.4/10 =√
.04 = .2. Thus the solution has the form

x(t) = C cos(.2t + γ)

We get, from the initial conditions

8 = C cos(−γ) , 0 = −.2C sin(−γ)

so γ = 0 and C = 8, and the equation of motion is

x(t) = 8 cos(.2t)

We could have concluded this more quickly, by observing that the initial conditions tell us that
x = 8 when the velocity is 0, so the maximum extension (the amplitude) has to be 8.

Example 12.9. Suppose that we come upon the above configuration already in motion, and when
we make our observation (at time t = 0), the mass is displaced 12 cm downward and is traveling
downward at a velocity of 1 cm/sec. Find the equation of motion.

Again, the equation has the general form

x(t) = C cos(.2t− γ)

and the initial conditions give

12 = C cos(−γ) , 1 = −.2C sin(−γ) .

We solve for C and γ as follows. The equations are

C cos(−γ) = 12 . C sin(−γ) = −5 .

Adding the squares of both equations gives us C2 = 122 + 52 = 169, so C = 13, and dividing one
equation by the other gives

tan(−γ) = −5/12‘, so that γ = .126π

and the equation of motion is
x(t) = 13 cos(.2t− .126π) .

Example 12.10. If a 16 lb. object is hung from a spring with spring constant k=9 lbs/foot and
then is given an initial velocity of 24 ft/sec, what is the maximum extent of the spring?

Here m = 16/32 and k = 9, so we have the spring equation

1
2
x′′ + 9x = 0

so x = A cos(3
√

2t) + B sin(3
√

2t). The initial conditions x(0) = 0, x′(0) = 24 lead to A = 0, B =
8
√

2. The solution thus is
x(t) = 8

√
2 sin(2

√
2t)
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whose maximum value is 8
√

2 feet.

Now, let us return to our spring with spring constant k and mass m, and suppose that it is inserted
in a viscous fluid which imparts a retarding force proportional to the velocity of the mass. Letting
q > 0 be the constant in this proportion, we see that equation (12.12) is replaced by

(12.13) mx′′ = −kx− qx′ , or x′′ + νx′ + ω2x = 0

where ω =
√

k/m and ν = q/m. The roots of this equation are

r =
−ν ±

√
ν2 − 4ω2

2
.

If ν > 2ω, then the roots are both real and negative, and there is exponential decay with no
oscillation. if ν < 2ω, then we have complex roots, so there are oscillations. But the real part of
the roots is −ν/2 < 0, so the oscillations are exponentially damped. Thus, if we want to have a
good damping effect (as for example in a shock absorber) we should be sure that ν is sufficiently
large; that is, that the fluid is very viscous.

Example 12.11. A system consisting of a spring in a viscous fluid is installed so as to absorb the
shock on a 100 kg mass. The spring constant is k=2500 and the constant of viscosity is q=600.
Suppose a shock is sustained when the system is in equilibrium imparting an instantaneous velocity
of 100 cm/sec. How long will it take for the amplitude of the oscillation to be reduced to 1 cm?

The basic differential equation is 100x′′ + 600x′ + 2500x = 0. The roots of the auxiliary equation
are r = −3± 4i, so the general solution is

x(t) = e−3t(A cos 4t + B sin 4t)

Now at t = 0, x = 0, x′ = 100. Solving for A and B with those initial conditions, we find
x(t) = 25e−3t sin 4t. Now the maximum amplitudes of this damped vibration occur at the values
t = kπ/8, for k an odd integer. Here is a table of the first few values:

t .3927 1.1781 1.9634
A 7.697 .729 .069

Thus the first maximum amplitude occurs at .3927 seconds and is 7.697 cm, but by 1.1781 the
maximum amplitude is less than 1 cm.

Problems 12.3.

1. A man drops out of a plane at 25,000 feet of altitude and immediately opens his parachute. For
this man and parachute the deceleration due to air resistance is proportional to 4v where v is his
velocity. How far has he fallen in one econd? How long does it take for him to hit the ground, and
at what velocity does he hit the ground?

2. a) Let a mass m hang from a spring of spring constant k. Suppose that it is set in motion.
Show that, throughout the motion, mv2 + kx2 is constant, where x represents displacement from
equilibrium, and v is velocity.
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b) Suppose that k = 4 dynes/cm and m = 10 g, and the spring is already in motion At a particular
instant the srping is located 10 cm. from equilibrium and traveling at velocity 8 cm/sec. For this
motion, what are the maximum velocity and maximum displacement of the mass?

3. The above configuration is put in a viscous fluid which exerts a retardant force proportional to
the velocity, with constant of proportionality q = 12. Find the equation of motion of the mass,
given that at time t = 0 it is at x = 0 and its velocity is 4.8 cm/sec. What is the maximum
displacement of the mass?

4. A 10 g mass is hung on a spring with spring constant 0.8 dynes/cm. The mass is extended 40
cm beyond equilibrium and then released. What is the maximum speed the mass attains?

5. The system described in problem 4 is now inserted in a fluit with constant of viscosity q = 4.
The mass is extended 10 cm and released. Find the equation of motion.

12.4 The Inhomogeneous Equation

We return now to the general second order equation with a nonzero right hand side;

(12.14) y′′ + ay′ + by = g(x) ,

Proposition 12.6 . Suppose that y = yp(x) is a particular solution of the equation (12.14). Then
every solution is of the form y = yp + yh where yh is a solution of the homogeneous equation.

Example 12.12. Find the solution of the initial value problem:

y′′ + y = x + 2 , y(0) = 4 , y′(0) = 2 .

It is easy to see that yp(x) = x+2 is a particular solution of this equation. Since the homogeneous
equation is y′′ + y = 0, the general solution is of the form

y(x) = x + 2 + A cos x + B sinx

To find A and B we use the initial conditions (at x = 0):

4 = 0 + 2 + A cos(0) , 2 = 1−A sin(0) + B cos(0)

giving us 4 = 2 + A, 2 = 1 + B, so A = 2, B = 1, and the solution is y = x + 2 + 2 cos x + sinx.

Example 12.13. Knowing that y = −(1/3) cos(2x) solves the differential equation

y′′ + y = cos(2x)

find the solution with initial values y(π/2) = 1, y′(π/2) = 3 .

We know the solution has the form y = −(1/3) cos(2x) + A cos x + B sinx. Putting in the initial
values gives us 1 = 1/3 + B, 3 = −A, so the solution is y = −(1/3) cos(2x)− 3 cos x + (2/3) sinx.

In general, we may neither be given a particular solution, nor can we see one by inspection.
It is usually very difficult to find that first particular solution. However, here is one technique
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(basically trial and error) which leads to a particular solution when the inhomogeneous function is
an elementary function.

Undetermined coefficients. To solve y′′ + ay′ + by = g(x), try a function of the same form as
g(x). More precisely:

If g is a polynomial of degree n, try the general polynomial of degree n.

If g is an exponential times a polynomial of degree n, try the general exponential times a polynomial
of degree n.

If g is a cosine or a sine times a polynomial of degree n, try the general cosine and sine times a
polynomial of degree n.

The reason this works is that successive differentiation keeps us in the same form, so we end
up equating coefficients and solving for them. There is one caution: if g is a solution of the
homogeneous equation, this will fail In this case we replace the phrase “polynomial of degree n”
by “polynomial of degree n or more”. Let us illustrate

Example 12.14. Find a particular solution of y′′ + 5y′ − y = x2 − 3x + 4.

We try y = ax2 + bx + c. First we calculate the first and second derivative: y′ = 2ax + b, y′′ = 2a.
Substituting these in the given equation we obtain

2a + 5(2ax + b)− (ax2 + bx + c) = x2 − 3x + 4

This simplifies to
−ax2 + (10a− b)x + 2a + 5b− c = x2 − 3x + 4

We now equate coefficients:

−a = 1 , 10a− b = −3 , 2a + 5b− c = 4

giving the solutions a = −1, b = −7, c = −41, so the answer is

y = −x2 − 7x− 41 .

Example 12.15. Find a particular solution of y′′ + y′ − y = xex.

Try y = (ax + b)ex. Differentiating, y′ = (ax + a + b)ex, y′′ = (ax + 2a + b)ex. Substituting in the
given equation leads to

(ax + 2a + b)ex + (ax + a + b)ex − (ax + b)ex = xex ,

reducing to the equations a = 1, 3a + b = 0. Thus the answer is

y = (x− 3)ex

Example 12.16. Find a particular solution of y′′ + y = cos x.
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Since cos x satisfies the homogeneous equation, we must try y = ax sinx + bx cos x. Then y′′ =
2a cos x− 2b sinx− ax sinx− bx cos x, and we obtain the equation

2a cos x− 2b sinx = cos x

so a = 1/2, and the solution is y = (1/2)x sinx.

Problems 12.4

1. Solve y′′ + 2y′ + y = x with the initial values y(0) = 0, y′(0) = 0.

2. Find the general solution of y′′ + 2y′ + y = sinx.

3. Find the general solution of y′′ − 4y = sin(2x).

4. Find the general solution of y′′ + 4y = sin(2x).

5. A crystal glass consists of cells in a crystalline shape which oscillate at a natural frequency, so
the motion is governed by a differential equation x′′ + ω2

0x = 0 where 2π/ω0 is the frequency. If
the ambient air is vibrating at a frequency of ω/2π (due to a monotonal sound, perhaps), then
the motion of a crystal is modified by the force of the air in motion so as to be governed by the
inhomogeneous equation

x′′ + ω2
0x = A cos ωt

Find a particular solution of this differential equation. What happens as ω approaches ω0? (This
phenomenon is called resonance.)
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