\(P \) Principal
\(n \) number of periods over which interest is earned
\(r \) interest rate per period

Future Value
\[S = P(1 + r)^n \]

Present Value
\[P = S(1 + r)^{-n} \]

\(R \) regular payment
\(n \) number of periods
\(r \) interest rate per period

Present Value of an Ordinary Annuity
\[A = R \left(\frac{1 - (1 + r)^{-n}}{r} \right) \]

Present Value of an Annuity Due
\[A = R \left(\frac{1 - (1 + r)^{-n}}{r} \right) (1 + r) \]

Future Value of an Ordinary Annuity
\[S = R \left(\frac{(1 + r)^n - 1}{r} \right) \]

Future Value of an Annuity Due
\[S = R \left(\frac{(1 + r)^n - 1}{r} \right) (1 + r) \]

Periodic payment into Sinking Fund
\[R = S \left(\frac{r}{(1 + r)^n - 1} \right) \]

Periodic payment of an Amortized Loan
\[R = A \left(\frac{r}{1 - (1 + r)^{-n}} \right) \]

\[\log_b(xy) = \log_b x + \log_b y \]

\[\log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y \]

\[\log_y x = \frac{\log_b x}{\log_b y} \]