1. (Dummit and Foote, §7.1, #26–27) Let F be a field. A discrete valuation on K is defined to be a map $\nu : F^\times \to \mathbb{Z}$ such that

(1): $\nu(ab) = \nu(a) + \nu(b)$;
(2): ν is surjective; and
(3): $\nu(x + y) \geq \min\{\nu(x), \nu(y)\}$

The valuation ring of ν is defined to be $R = \{x \in F^\times \mid \nu(x) \geq 0\} \cup \{0\}$.

(a) Prove R is a subring of F that contains the identity.
(b) Prove that for each nonzero element $x \in F$, either x or x^{-1} is in R.
(c) Prove that an element x is a unit of R if and only if $\nu(x) = 0$.
(d) Now let $F = \mathbb{Q}$ and fix a prime p. Define $\nu : \mathbb{Q}^\times \to \mathbb{Z}$ as follows. Fix $x = \frac{a}{b} \in \mathbb{Q}^\times$ write $x = p^n \frac{a'}{b'}$ where p does not divide a' and b'. (That is, factor out all possible powers of p and lump them in the p^n term.) Then define

$$\nu(x) = n.$$

Describe the corresponding valuation ring R.

(e) Retain the setting of part (d). Compute the units in R.

2. (Dummit and Foote, §7.2, #5) Let F be a field and consider formal Laurent power series over F,

$$F((x)) := \left\{ \sum_{i \geq n} a_i x^n \mid a_i \in F \text{ and } n \in \mathbb{Z} \right\}.$$

(a) Define natural operations of addition and multiplication on $F((x))$ and prove that $F((x))$ is a field.
(b) Define $\nu : F((x))^\times \to \mathbb{Z}$ by defining ν of a formal power series $a_n x^n + a_{n+1} x^{n+1} + a_{n+2} x^{n+2} + \cdots$ (with $a_n \neq 0$) to be n. Prove ν is a valuation in the sense of Problem 3.
(c) Show that the valuation ring of ν is the subring of $F((x))$ of formal Laurent series in which no negative powers of x occur. (This subring is called the ring of formal power series in x and typically denoted $F[[x]]$.)

3. (Dummit and Foote, §6.3 #29) Let R be ring. Define the nilradical of R to consider of all elements $x \in R$ such that there exists $n \in \mathbb{Z}$ such that $x^n = 0$.

(a) Suppose R is commutative. Prove that the nilradical of R is an ideal of R.
(b) Prove or disprove: if R is arbitrary (not necessarily commutative), then the nilradical of R is an ideal of R.

4. (a) Prove or disprove: the subset of $\mathbb{Z}[x]$ consisting of those elements whose coefficients sum to zero is an ideal $\mathbb{Z}[x]$.

(b) A polynomial \(p \in \mathbb{R}[x] \) is said to vanish to order \(k \) at \(a \in \mathbb{R} \) if \(p^{(j)}(a) = 0 \) for all \(j \leq k \); here \(p^{(j)} \) is the \(j \)th derivative of \(p \). Prove or disprove: for a fixed \(a \in \mathbb{R} \) and \(k \in \mathbb{Z} \), the polynomials that vanish to order \(k \) at \(a \) are an ideal in \(\mathbb{R}[x] \).

(c) Retain the terminology of (b). Prove or disprove: fix \(n \in \mathbb{Z} \), the set polynomials that vanish to order \(n \) at some (not necessarily fixed) point are an ideal in \(\mathbb{R}[x] \).

5. (Dummit and Foote, §7.3 #26) The characteristic of a ring \(R \) is the smallest integer \(n \) such that \(1 + \cdots + 1 = 0 \); if no such \(n \) exists, \(R \) is said to have characteristic 0.

(a) Prove that the map \(\mathbb{Z} \to R \) defined by

\[
k \mapsto \begin{cases}
1 + \cdots + 1 & \text{if } k > 0 \\
0 & \text{if } k = 0 \\
-1 - \cdots - 1 & \text{if } k < 0
\end{cases}
\]

is a ring homomorphism with kernel \(n\mathbb{Z} \) where \(n \) is the characteristic of \(R \).

(b) Suppose \(R \) is commutative with 1 with characteristic \(n > 0 \). Prove that the equality (“The Freshman’s Dream”)

\[
(x + y)^n = x^n + y^n
\]

holds in \(R[x, y] \) if and only if the characteristic \(n \) is prime.

(c) There is a small subtlety in (b). Note that there is a difference between the equality

\[
(1) \quad (x + y)^n = x^n + y^n \quad \text{in } R[x, y]
\]

and the equality

\[
(2) \quad (x + y)^n = x^n + y^n \quad \text{for all } x, y \in R.
\]

Make sure you understand this. Clearly (1) implies (2), but the converse is not clear (and I’m not sure it is even true). In particular for \(R = \mathbb{Z}/n \mathbb{Z} \) one can ask: does (2) hold if and only if \(n \) is prime? This is probably too difficult a question for this problem set. But you should try to think about it nonetheless.

6. Let \(R \) be a (possibly noncommutative) ring. Recall that a proper ideal \(M \) in \(R \) is called a maximal ideal if the only ideals containing it are \(M \) and \(R \). Meanwhile an ideal \(P \) is called prime if whenever \(a \) and \(b \) are elements of \(R \) so that \(ab \in R \), then either \(a \in R \) or \(b \in R \). (When \(R \) is noncommutative, such an ideal is usually called completely prime. But we won’t use this terminology.) Prove or disprove the following implications (each of which hold if \(R \) is commutative):

(i) If \(R/M \) is a field then \(M \) is maximal.
(ii) If \(R/M \) is a skew field then \(M \) is maximal.
(iii) If \(M \) is maximal then \(R/M \) is a field.
(iv) If \(M \) is maximal then \(R/M \) is a skew field.
(v) If \(R/P \) is an integral domain, then \(P \) is prime.
(vi) If P is prime, then R/P is an integral domain.

7. Consider the following four rings

\[R = \mathbb{Z}[\mathbb{Z}/n] \]
\[S = \mathbb{Z}[x]/(x^n) \]
\[T = \mathbb{Z}[x]/(x^n - 1) \]
\[U = \mathbb{Z}[x]/((x - 1)^n). \]

Determine which of these rings are isomorphic.

8. (Dummit and Foote, §7.5 #3) Let F be a field. Prove that F contains a unique smallest subfield F_0 and that F_0 is isomorphic to either \mathbb{Q} or \mathbb{Z}/p for a prime p.

9. (Dummit and Foote, §7.5 #4) Use Zorn’s Lemma to prove that the real numbers contain a subring A with $1 \in A$ so that A is maximal (under inclusion) with respect to the property that $\frac{1}{2} \notin A$. Later we will see that \mathbb{R} is the ring of fractions of A.