Notes to accompany the discussion of $(\mathbb{Z}/m)^c \rtimes S_c$

September 15, 2003

In class I defined a map

\[\Phi : S_c \longrightarrow \text{Aut}_{\text{group}}((\mathbb{Z}/m)^c) \]

\[\sigma \longrightarrow \phi_{\sigma}, \]

where

\[\phi_{\sigma}(z_1, \ldots, z_c) = (z_{\sigma(1)}, \ldots, z_{\sigma(n)}). \]

As an in-class exercise, I asked you to verify that each ϕ_{σ} was a group automorphism. But much to my embarrassment, Φ is not a homomorphism! Here is why.

Take σ and τ in S_c. If Φ is a homomorphism, then

\[\Phi(\sigma \tau) = \Phi(\sigma) \circ \Phi(\tau). \]

By definition, this means that for all $(z_1, \ldots, z_c) \in (\mathbb{Z}/m)^c$,

\[\phi_{\sigma \tau}(z_1, \ldots, z_c) = (\phi_{\sigma} \circ \phi_{\tau})(z_1, \ldots, z_c). \] \hfill (1)

Let's work out the left-hand side of (1),

\[\phi_{\sigma \tau}(z_1, \ldots, z_c) = (z_{\sigma \tau(1)}, \ldots, z_{\sigma \tau(c)}). \] \hfill (2)

Now turn to the right-hand side,

\[(\phi_{\sigma} \circ \phi_{\tau})(z_1, \ldots, z_c) = \phi_{\sigma}(\phi_{\tau}(z_1, \ldots, z_c)) \]

\[= \phi_{\sigma}(z_{\tau(1)}, \ldots, z_{\tau(c)}). \]

Now set $(y_1, \ldots, y_c) = (z_{\tau(1)}, \ldots, z_{\tau(c)})$. So

\[(\phi_{\sigma} \circ \phi_{\tau})(z_1, \ldots, z_c) = \phi_{\sigma}(y_1, \ldots, y_c) \]

\[= (y_{\sigma(1)}, \ldots, y_{\sigma(c)}). \]

Since $y_j = z_{\tau(j)}$, by definition, then $y_{\sigma(i)} = z_{\tau(\sigma(i))}$. Thus previous equation reads

\[(\phi_{\sigma} \circ \phi_{\tau})(z_1, \ldots, z_c) = (z_{\tau \sigma(1)}, \ldots, z_{\tau \sigma(c)}). \] \hfill (3)
Comparing (2) and (3), together with (1), shows that Φ is not a homomorphism. Thus the semidirect product I was manipulating in class, $(\mathbb{Z}/m)^c \rtimes S_c$ isn’t well-defined! (This accounts for a lot of my confusion on Friday.) Here is how to fix things.

Instead define

$$
\Phi'(\sigma) : S_c \to \text{Aut}_{\text{group}}((\mathbb{Z}/m)^c)
$$

where

$$
\phi'_\sigma(z_1, \ldots, z_c) = (z_{\sigma^{-1}(1)}, \ldots, z_{\sigma^{-1}(m)}).
$$

The in-class exercise again shows that each ϕ'_σ is a group automorphism. And this time Φ' is a homomorphism! Here’s why; we need to check

$$
\Phi'((\sigma \tau)) = \Phi'((\sigma)) \circ \Phi'((\tau)).
$$

By definition, this means that for all $(z_1, \ldots, z_c) \in (\mathbb{Z}/m)^c$,

$$
\phi'_{\sigma \tau}(z_1, \ldots, z_c) = (\phi'_{\sigma} \circ \phi'_{\tau})(z_1, \ldots, z_c).
$$

The left-hand side is

$$
\phi_{\sigma \tau}(z_1, \ldots, z_c) = (z_{(\sigma \tau)^{-1}(1)}, \ldots, z_{(\sigma \tau)^{-1}(c)}) = (z_{\tau^{-1}(1) \sigma^{-1}(1)}, \ldots, z_{\tau^{-1}(c) \sigma^{-1}(c)}).
$$

Now turn to the right-hand side; we can trace through the same steps as above to conclude that

$$
(\phi'_{\sigma} \circ \phi'_{\tau})(z_1, \ldots, z_c) = (z_{\tau^{-1} \sigma^{-1}(1)}, \ldots, z_{\tau^{-1} \sigma^{-1}(c)}).
$$

So, indeed, Φ' is a homomorphism. This also explains the recent update to Problem #4 on the problem set.

Thus (using Φ') we can talk about the semidirect product $(\mathbb{Z}/m)^c \rtimes S_c$. Because of the mistake above, I feel obliged to give a correct account of my “hand waving” on Friday. When possible, I stuck to the notation on Friday, but sometimes I needed new (or different notation.) My apologies.

Theorem 7 Fix a conjugacy class C in $G := S_{cm}$ corresponding to the cycle structure that consists of c disjoint cycles of size m. Then G acts transitively on C by the conjugation action, and for $x \in C$ there is an isomorphism

$$(\mathbb{Z}/m)^c \rtimes S_c \simeq \text{Stab}_G(x).$$

The rest of these notes is devoted to a proof. The statement that the action is transitive is clear: after all, a conjugacy class, by definition, consists precisely of all conjugates of any element in the class. To treat the remaining statement, it is helpful to fix x. In cycle notation, we define

$$
x = (1 \ 2 \ \cdots \ m)(m+1 \ m+2 \ \cdots \ 2m) \cdots (cm-c+1 \ cm-c+1 \ \cdots \ mc).
$$

Now set σ_1 be the first m cycle

$$
\sigma_1 = (1 \ 2 \ \cdots \ m) \in S_{mc}.
$$
View \(\sigma_1 \) and element of \(S_{mc} \) (even though it looks like it could be an element of \(S_m \)). Similarly let \(\sigma_2 \) be the cycle in \(S_{mc} \) that is second in the expression for \(x \),

\[
\sigma_2 = (m+1 \ldots 2m) \in S_{mc}.
\]

In general, let \(\sigma_k \) be the \(k \)th cycle in the expression for \(x \),

\[
\sigma_k = ((k-1)m+1 \ldots mk) \in S_{mc}.
\]

If we write \(\mathbb{Z}/m = \{0, 1, \ldots, m-1\} \) (as usual), this allows use to define a map

\[
\psi: (\mathbb{Z}/m)^c \longrightarrow S_{mc}
\]

\[
(\epsilon_1, \ldots, \epsilon_c) \longrightarrow \sigma_1^{\epsilon_1} \sigma_2^{\epsilon_2} \cdots \sigma_c^{\epsilon_c}.
\]

(In class, the map \(\psi \) corresponded to the “concatenation” \(\langle \epsilon_1 \cdots \epsilon_c \rangle \). The version with \(\psi \) is more precise.)

Lemma 8 The map \(\psi \) is a homomorphism. Moreover, the image of \(\psi \) lands in the stabilizer of \(x \) in \(G = S_{mc} \).

Proof of Lemma. To show that \(\psi \) is a homomorphism we have to check

\[
\psi((\epsilon_1, \ldots, \epsilon_c)(\epsilon_1', \ldots, \epsilon_c')) = \psi(\epsilon_1, \ldots, \epsilon_c) \psi(\epsilon_1', \ldots, \epsilon_c').
\]

The left-hand side of (9) is

\[
\psi(\epsilon_1 \epsilon_1', \ldots, \epsilon_c \epsilon_c') = \sigma_1^{\epsilon_1 \epsilon_1'} \cdots \sigma_c^{\epsilon_c \epsilon_c'}
\]

\[
= \sigma_1^{\epsilon_1} \sigma_1^{\epsilon_1'} \cdots \sigma_1^{\epsilon_c} \sigma_1^{\epsilon_c'}.
\]

Now it is clear that the cycles \(\sigma_i \) and \(\sigma_j \) are disjoint (if \(i \neq j \)); so they (and all their powers) commute. So we can rearrange the terms of the previous equation to read

\[
\psi(\epsilon_1 \epsilon_1', \ldots, \epsilon_c \epsilon_c') = (\sigma_1^{\epsilon_1} \cdots \sigma_1^{\epsilon_c})(\sigma_1^{\epsilon_1'} \cdots \sigma_1^{\epsilon_c'}).
\]

But clearly this is just

\[
= \psi(\epsilon_1, \ldots, \epsilon_c) \psi(\epsilon_1', \ldots, \epsilon_c').
\]

So, indeed, \(\psi \) is a homomorphism.

To prove the assertion that \(\psi \) maps into the stabilizer, we argue as follows. Let \(a_i = (0, \ldots, 0, 1, 0, \ldots 0) \in (\mathbb{Z}/m)^c \) with the 1 in the \(i \)th position. So \(\psi(a_i) = \sigma_i \). From the definition of \(x \) and our knowledge of the conjugation action, we compute

\[
\psi(a_1)x\psi(a_1)^{-1} = \sigma_1 x \sigma_1^{-1} = (\sigma_1(1) \sigma_1(2) \cdots \sigma_1(m)) \cdots (\sigma_1(cm-c+1) \cdots \sigma_1(mc))
\]

\[
= (23 \cdots m)(m+1m+2 \cdots 2m) \cdots (cm-c+1 cm-c+1 \cdots mc)
\]

\[
= x.
\]

So \(\psi(a_1) \in \text{Stab}_G(x) \). A similar computation shows that \(\psi(a_j) \in \text{Stab}_G(x) \) for any \(j \). Now take a general element \((\epsilon_1, \ldots, \epsilon_c) \in (\mathbb{Z}/m)^c \). Then we compute

\[
\psi(\epsilon_1, \ldots, \epsilon_c) = \psi(a_1^{\epsilon_1}, \ldots, a_1^{\epsilon_c}),
\]
and since ψ is a homomorphism, this equals
\[\psi(a_1)^{\epsilon_1} \cdots \psi(a_c)^{\epsilon_c}. \]

Now we have check that each $\psi(a_j) \in \text{Stab}_G(x)$. Since $\text{Stab}_G(x)$ is a group, this means that $\psi(a_1)^{\epsilon_1} \cdots \psi(a_c)^{\epsilon_c}$ and hence $\psi(\epsilon_1, \ldots, \epsilon_c)$ is in $\text{Stab}_G(x)$. \hfill \Box

Now define a map
\[\eta : S_c \longrightarrow S_{mc} \]
\[\sigma \longrightarrow \Sigma \]
as follows. First define
\[\eta(12) = (1 m+1)(2 m+2) \cdots (m 2m); \]
so $\eta(12)$ swaps the first two “chunks” of coordinates. Define
\[\eta(123 \cdots c) = (1 2m + 1 3m + 1 \cdots cm - m + 1)(2 2m + 2 3m + 2 \cdots cm - m + 2) \cdots (m 2m 3m \cdots cm); \]
so $\eta(123 \cdots c)$ takes the first chunk of coordinates to the second, the second chunk to the third, and so on, until the cth chunk gets sent back to the first chunk. Since (12) and $(123 \cdots c)$ generate S_c, each element $\sigma \in S_c$ can be written as a product $\tau_1 \cdots \tau_k$ where each τ_i is either (12) or $(123 \cdots c)$. Define
\[\eta(\sigma) = \eta(\tau_1) \cdots \eta(\tau_k); \] (10)
since each $\eta(\tau_i)$ is already defined the right-hand side is defined. It takes a little checking to verify that η is well-defined. This amounts to the observation that for general σ, the definition given above takes the ith chunk of coordinates to the $\sigma(i)$th chunk. We leave this for you to check. The definition in (10) automatically makes η a homomorphism. (Check!) Summarizing, we conclude that η is well-defined homomorphism from S_c to S_{mc}.

Lemma 11 For each $\sigma \in S_c$, $\eta(\sigma) \in \text{Stab}_G(x)$.

Proof of Lemma. Consider $\eta(\sigma)x\eta(\sigma)^{-1}$. From the discussion above this will move the ith cycle in the expression of x to the $\sigma(i)$th cycle. But these cycles are disjoint, so the result is still x. \hfill \Box

Theorem 12 Every element of $\text{Stab}_G(x)$ may be written as
\[\psi(\epsilon_1, \ldots, \epsilon_c)\eta(\sigma) \]
for unique elements $(\epsilon_1, \ldots, \epsilon_c) \in (\mathbb{Z}/m)^c$ and $\sigma \in S_c$.

Proof of theorem. Suppose $g \in \text{Stab}_G(x)$. Then $gxg^{-1} = x$. Since we know how conjugation works, we conclude, for instance, that $g(1 2 \cdots m)g^{-1}$ must map to some other cycle
\[(km+1 km+2 \cdots (k+1)m) \]
for some k. (That is, g maps the first cycle to the $k + 1$st.) Then since we know how conjugation acts, we conclude that there exists j_1 such that
\[g(1) = km+j_1+1; \quad g(2) = km+j_1+2; \quad \cdots; \]
here if $km + j_1 + l > (k+1)m$, we subtract off m. Define $\sigma(1) = k+1$ and $\epsilon_1 = j_1$. Continuing in this way by considering $g(m+1)^m + 2\cdots 2m)^{-1}$ to define $\sigma(2)$ and $\epsilon_2 = j_2$; and so on. This defines an element $\sigma \in S_c$ and $(\epsilon_1, \ldots, \epsilon_c) \in (\mathbb{Z}/m)^c$. By construction
\[g = \psi(\epsilon_1, \ldots, \epsilon_c) \eta(\sigma), \]
and the elements $\sigma \in S_c$ and $(\epsilon_1, \ldots, \epsilon_c) \in (\mathbb{Z}/m)^c$ so constructed are unique.

Lemma 13 Fix σ and σ' in S_c and $(\epsilon_1, \ldots, \epsilon_c)$ and $(\epsilon_1', \ldots, \epsilon_c')$ and in $(\mathbb{Z}/m)^c$. Then in $S_m c$
\[\psi(\epsilon_1, \ldots, \epsilon_c) \eta(\sigma) \psi(\epsilon_1', \ldots, \epsilon_c') \eta(\sigma') = \psi(\epsilon_1, \ldots, \epsilon_c) \psi(\epsilon_{\sigma^{-1}(1)'}, \ldots, \epsilon_{\sigma^{-1}(m)}') \eta(\sigma) \eta(\sigma'). \]

Proof of Lemma. After canceling $\psi(\epsilon_1, \ldots, \epsilon_c)$ on the left and $\eta(\sigma')$ on the right in the conclusion of the lemma, we must prove
\[\eta(\sigma) \psi(\epsilon_1', \ldots, \epsilon_c') = \psi(\epsilon_{\sigma^{-1}(1)'}, \ldots, \epsilon_{\sigma^{-1}(m)}') \eta(\sigma). \]
(This is Ron’s favorite argument in disguise.) We compute where the left-hand side sends each index, and verify that this is where the right-hand side sends the index. Start with the index 1. The left hand side first rearranges 1 according to σ_1' and then takes the result and moves it into the $\sigma(1)$st chunk of coordinates. Meanwhile, the right-hand side takes 1, moves it into the $\sigma(1)$st chunk of coordinates and then rearranges it according to the power of $\sigma_{\sigma(1)}$ that the $\sigma(1)$ entry of
\[\left(\epsilon_1', \ldots, \epsilon_{\sigma^{-1}(m)}' \right) \]
specifies. But this power is $\epsilon_{\sigma^{-1}(\sigma(1))} = \epsilon_1$. So, indeed, the right-hand side maps 1 to the same place that the left-hand side does. We can repeat the same analysis for all the other indices $2, \ldots, mc$. The lemma follows.

Proof of Theorem 7. Define a map
\[\Psi : (\mathbb{Z}/m)^c \times S_c \longrightarrow \text{Stab}_G(x) \]
via
\[((\epsilon_1, \ldots, \epsilon_c), \sigma) \longrightarrow \psi(\epsilon_1, \ldots, \epsilon_c) \eta(\sigma). \]
Theorem 12 says that for every $g \in \text{Stab}_G(x)$, there exists $(\epsilon_1, \ldots, \epsilon_c)$ and σ such that
\[g = \psi(\epsilon_1, \ldots, \epsilon_c) \eta(\sigma); \]
so Ψ is surjective. Theorem 12 also says that $(\epsilon_1, \ldots, \epsilon_c)$ and σ are unique; so Ψ is injective.

It remains to check that Ψ is a homomorphism. This is essentially Lemma 13, as we now show. Fix
\[((\epsilon_1, \ldots, \epsilon_c), \sigma) \text{ and } ((\epsilon_1', \ldots, \epsilon_c'), \sigma') \in (\mathbb{Z}/m)^c \times S_c. \]
Their product, according to the definition of the semidirect product defined by Φ' is,
\[\left(\epsilon_1 \epsilon_{\sigma^{-1}(1)}, \ldots, \epsilon_c \epsilon_{\sigma^{-1}(c)}, \sigma \sigma' \right) \tag{14} \]
We compute:

\[\Psi ((\epsilon_1, \ldots, \epsilon_c), \sigma) \Psi ((\epsilon'_1, \ldots, \epsilon'_c), \sigma') = \psi(\epsilon_1, \ldots, \epsilon_c) \eta(\sigma) \psi(\epsilon'_1, \ldots, \epsilon'_c) \eta(\sigma') \]
\[= \psi(\epsilon_1, \ldots, \epsilon_c) \psi(\epsilon'_{\sigma^{-1}(1)}, \ldots, \epsilon'_{\sigma^{-1}(m)}) \eta(\sigma) \eta(\sigma') \]
\[= \Psi \left((\epsilon_1 \epsilon'_{\sigma^{-1}(1)}, \ldots, \epsilon_c \epsilon'_{\sigma^{-1}(c)}), \sigma \sigma' \right) \]
\[= \Psi \left(((\epsilon_1, \ldots, \epsilon_c), \sigma)((\epsilon'_1, \ldots, \epsilon'_c), \sigma') \right). \]

The first equality follows by definition of \(\Psi \); the second is Lemma 13; the third is again the definition of \(\Psi \); and the last is Equation (14). Reading the above string of equations left to right shows \(\Psi \) is a homomorphism. This completes the proof of Theorem 7. \(\square \)