Review problems for chapters 13 and 14:

The 3 problems are independent.

(1) Consider the solid region R in 3-space above the surface S with equation $z = x^2 + y^2$ and below the plane P with equation $z = 1$. Evaluate the volume of R, by (a) using a double integral, and (b) using a triple integral. Find the area of the portion of the surface S below P.

(2) Evaluate the following integral:

\[\int_0^{\pi/2} \int_0^{\sqrt{2}} \int_0^{2yz} \sin \left(\frac{x}{y} \right) \, dx \, dy \, dz. \]

(3) Consider the vector field $\mathbf{F}(x, y, z) = < \cos x + 2yz, \sin y + 2xz, z + 2xy >$. (a) Is \mathbf{F} conservative? (b) If yes, find a potential function f for \mathbf{F} (recall that this means that $\nabla f = \mathbf{F}$). (c) Evaluate the integral $\int_C \mathbf{F}(\mathbf{r}) \, d\mathbf{r}$, where C is the path parametrized by $\mathbf{r}(t) = < R \cos t, R \sin t, t >$ (for a fixed $R > 0$) as t varies from 0 to 4π, and $\mathbf{r} = < x, y, z >$ is the position vector in 3-space.