1. Let $X = k^n$, where k is an algebraically closed field of characteristic zero. Show that for any $m \in \mathbb{Z}$ such that $n \leq m \leq 2n$ there exists a finitely generated D_X-module M such that $d(M) = m$.

2. Let $\alpha \notin \mathbb{Z}$. Let $D = D(1)$. Let M be the quotient of D by the left ideal generated by $(z\partial - \alpha)^2$. Let N be the quotient of D by the left ideal generated by $z\partial - \alpha$.
 Show that:
 (a) M is a holonomic D-module and its Bernstein multiplicity is equal to 2;
 (b) N is a holonomic D-module and its Bernstein multiplicity is equal to 1;
 (c) we have an exact sequence
 $$0 \rightarrow N \rightarrow M \rightarrow N \rightarrow 0$$
 but M is not isomorphic to a direct sum $N \oplus N$;
 (d) the characteristic varieties of M and N are equal.

3. Let $X = k^n$ and $Y = X \times k = k^{n+1}$. Let i be the inclusion $i(x) = (x, 0)$. Let M be a finitely generated D_X-module with characteristic variety $Ch(M) \subset k^n \times k^n$. Prove that
 $$Ch(i_+(M)) = \{(x, 0, y, \beta) \mid (x, y) \in Ch(M) \text{ and } \beta \in k\} \subset k^{n+1} \times k^{n+1}.$$