Math1220 Midterm 1 Review Problems
Answer Key

1. \(y = -4x + 4 + \frac{\pi}{2} \)

2. \(f^{-1}(x) = \frac{1 + 5\sqrt{x}}{2 - 2\sqrt{x}} \)

3. (a) \(y' = \frac{2\cos(3x)(-\sin(3x))(3)}{\cos^3(3x)} + \frac{3}{\sqrt{1 - (3x - 2)^2}} \)

(b) \(y' = (5x + 3)^{2x'}(4x \ln(5x + 3) + \frac{5(2x^2)}{5x + 3}) \)

(c) \(y' = \pi(1 + x^4)^{x'}(4x^3) + \pi^{1+x'}(\ln \pi)(4x^3) \)

(d) \(y' = -\text{sech}(2x)\tan(\cos(2x))(\sin(2x))(2) \)

(e) \(y' = \frac{3}{3x - 2} - 12x^{-7} + 12x^2 - 5\cos(5x) \)

(f) \(y' = e^{\frac{1}{3x}}\left(-\frac{1}{3x^2}\right) + \frac{1}{e^{\frac{1}{3x}}}(-3) \)

(g) \(y' = (x^3 - 1)^{\ln x}\left(\frac{1}{x}\ln(x^3 - 1) + \frac{3x^2(\ln x)}{x^3 - 1}\right) \)

(h) \(y' = \frac{-\sin x}{\sqrt{\cos x + 3^2 - 1}} \)

4. \(t = \frac{-10 \ln(0.08)}{\ln 2} \) years

5. Evaluate each integral.
 (a) \(x \arcsin(2x) + \frac{1}{2} \sqrt{1 - 4x^2} + C \)
 (b) \(5 \ln|2x^2 + x - 7| + C \)
 (c) \(-5 \arctan(\ln x) + C \)
 (d) \(\frac{4^{-1} - 4^{-5}}{\ln 16} = \frac{255}{1024 \ln 16} \)
 (e) \(\frac{1}{2} y^2 \arctan(y) - y + \arctan(y) + C \)
 (f) \(-\frac{1}{\ln 2} \left(2^{\sqrt{1}/2} - 2\right) \)
 (g) \(-\frac{1}{3} \ln 4 \)
 (h) \(\frac{6^4 - 1}{\ln 36} \)
 (i) \(\frac{1}{2} \ln(e^{2x} + 5) + C \)
\[\frac{5}{3} \arcsin(x^3) + C \]

\[\frac{1}{4} \arctan\left(\frac{x^2}{2}\right) + C \]

\[\frac{1}{4} \ln(x^4 + 4) + C \]

\[\frac{3}{\ln 4} \left(x(4^x) - \frac{4^x}{\ln 4} \right) \]

\[-\frac{\pi}{2} \]

6. \[\frac{1}{14} \]

7. \[f'(x) = \frac{\sin x + 1}{\cos^2 x} \] and since \(\sin x \) is always between -1 and 1, then \(1 + \sin x \) must be between 0 and 2 (inclusive) which is always nonnegative. The denominator is also always positive on the interval \(\left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \). This means that the derivative is always nonnegative in the given domain of the function. This implies that the function is monotonically increasing.

8. \[\frac{1}{4} \]

9. \[f'(x) = -\left(\frac{2}{1 + 4x^2} + 15(x - 1)^2 \right) \] which is always positive inside the parentheses since all coefficients are positive and the powers on \(x \) are even. Thus, the derivative is always negative which means the inverse function exists.

\[(f^{-1})'(11) = \frac{1}{f'(0)} = -\frac{1}{17} \]

10.

(a) \[\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{\frac{5x}{x}} = e^{\frac{15}{17}} \]

(b) \[\lim_{x \to \infty} \left(1 \right)^{\frac{5x}{x}} = 1 \]