Review
Question

\[\mu? \quad p? \]
Question

\(\mu \)?

C.I.?

Test?

1-S?

2-S?

1-S?

2-S?

1-S?

2-S?

1-S?

2-S?

1-S?

2-S?

1-S?

2-S?

\(\sigma \) known?

\(\sigma \) unknown?

P366

P476

P476

P505

P505

P526

P513

P532

P378

P447

P450
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Confidence intervals:

\[
(\bar{x} - z^* \sigma \sqrt{\frac{1}{n}}, \bar{x} + z^* \sigma \sqrt{\frac{1}{n}})
\]

z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$.

• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Confidence intervals:
 * form: estimate \pm margin of error / interpretation
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Confidence intervals:
 * form: estimate \pm margin of error / interpretation
 * $\left(\bar{x} - z^* \frac{\sigma}{\sqrt{n}}, \bar{x} + z^* \frac{\sigma}{\sqrt{n}}\right)$
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Confidence intervals:
 * form: estimate \pm margin of error / interpretation
 * $(\bar{x} - z^* \frac{\sigma}{\sqrt{n}}, \bar{x} + z^* \frac{\sigma}{\sqrt{n}})$
 * z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$
• Inference about \(\mu \) with known \(\sigma \) — z-procedures (confidence interval & test of significance)
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)
• Test of significance:

H_0 vs. H_a / H_0:
$\mu = \mu_0$

Test statistics:
$z = \bar{x} - \mu_0 / \sigma / \sqrt{n}$

P-value:
H_a: $\mu > \mu_0$ — upper tail probability corresponding to z
H_a: $\mu < \mu_0$ — lower tail probability corresponding to z
H_a: $\mu \neq \mu_0$ — twice upper tail probability corresponding to $|z|$

Significance level α and conclusion
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
 * test statistics: $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s $H_a / H_0 : \mu = \mu_0$
 * test statistics: $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$
 * P-value:
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: \mu = \mu_0$
 * test statistics: $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$
 * P-value:
 * $H_a: \mu > \mu_0$ — upper tail probability corresponding to z
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
 * test statistics: $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$
 * P-value:
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to z
 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to z
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Test of significance:

 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$

 * test statistics: $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

 * P-value:

 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to z

 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to z

 * $H_a : \mu \neq \mu_0$ — twice upper tail probability corresponding to $|z|$
• Inference about μ with known σ — z-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
 * test statistics: $z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$
 * P-value:
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to z
 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to z
 * $H_a : \mu \neq \mu_0$ — twice upper tail probability corresponding to $|z|$
 * significance level α and conclusion
• Assumptions for z-procedures:

- the sample is an SRS
- the population has a normal distribution
- the population standard deviation \(\sigma \) is known

Margin of errors in confidence intervals are affected by \(C \), \(\sigma \) and \(n \) to get a level \(C \), C.I. with margin of \(m \), we need an SRS with sample size \(n = \left(\frac{z \ast \sigma}{m} \right)^2 \)

The significance of test will also be affected by sample size.
• Assumptions for z-procedures:
 * the sample is an SRS
Assumptions for z-procedures:

- the sample is an SRS
- the population has a normal distribution

Margin of errors in confidence intervals are affected by C, σ, and n to get a level C. I with margin of m, we need an SRS with sample size $n = \left(\frac{z \sigma}{m}\right)^2$

The significance of test will also be affected by sample size
• Assumptions for z-procedures:
 ∗ the sample is an SRS
 ∗ the population has a normal distribution
 ∗ the population standard deviation σ is known

• Margin of errors in confidence intervals are affected by C, σ and n to get a level C C.I. with margin of m, we need an SRS with sample size $n = \left(\frac{z}{m}\right)^2$.

• The significance of test will also be affected by sample size.
• Assumptions for z-procedures:
 * the sample is an SRS
 * the population has a normal distribution
 * the population standard deviation σ is known
• Margin of errors in confidence intervals are affected by C, σ, and n
 to get a level C C.I. with margin of m, we need an SRS
 with sample size

$$n = \left(\frac{z^* \sigma}{m} \right)^2$$
• Assumptions for z-procedures:
 * the sample is an SRS
 * the population has a normal distribution
 * the population standard deviation σ is known

• Margin of errors in confidence intervals are affected by C, σ and n

 to get a level C C.I. with margin of m, we need an SRS with sample size

 $$n = \left(\frac{z^* \sigma}{m} \right)^2$$

• The significance of test will also be affected by sample size
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Standard error: $\frac{s}{\sqrt{n}}$
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Standard error: $\frac{s}{\sqrt{n}}$

• t-distribution; degrees of freedom ($n - 1$)
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Standard error: $\frac{s}{\sqrt{n}}$

• t-distribution; degrees of freedom ($n - 1$)

• Confidence intervals:
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Standard error: $\frac{s}{\sqrt{n}}$

• t-distribution; degrees of freedom $(n - 1)$

• Confidence intervals:

 $\bar{x} - t^* \frac{s}{\sqrt{n}}, \bar{x} + t^* \frac{s}{\sqrt{n}}$
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Standard error: $\frac{s}{\sqrt{n}}$

• t-distribution; degrees of freedom $(n - 1)$

• Confidence intervals:
 $\bar{x} - t^* \frac{s}{\sqrt{n}}, \bar{x} + t^* \frac{s}{\sqrt{n}}$

 t^* is determined by the confidence level C — the t-score corresponding to the upper tail $(1 - C)/2$
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:

 H_0 vs H_a:

 H_0: $\mu = \mu_0$

 test statistics: $t = \bar{x} - \mu_0 \frac{s}{\sqrt{n}}$

 P-value:

 H_a: $\mu > \mu_0$ — upper tail probability corresponding to t

 H_a: $\mu < \mu_0$ — lower tail probability corresponding to t

 H_a: $\mu \neq \mu_0$ — twice upper tail probability corresponding to $|t|$

 significance level α and conclusion
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s $H_a / H_0 : \mu = \mu_0$
 * test statistics: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: $H_0 \ v.s \ H_a / H_0 : \mu = \mu_0$
 * test statistics: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$
 * P-value:
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
 * test statistics: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$
 * P-value:
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to t
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
 * test statistics: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$
 * P-value:
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to t
 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to t
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu = \mu_0$
 * test statistics: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$
 * P-value:
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to t
 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to t
 * $H_a : \mu \neq \mu_0$ — twice upper tail probability corresponding to $|t|$
• Inference about μ with unknown σ — t-procedures (confidence interval & test of significance)

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: \mu = \mu_0$
 * test statistics: $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$
 * P-value:
 * $H_a: \mu > \mu_0$ — upper tail probability corresponding to t
 * $H_a: \mu < \mu_0$ — lower tail probability corresponding to t
 * $H_a: \mu \neq \mu_0$ — twice upper tail probability corresponding to $|t|$
 * significance level α and conclusion
• Inference about two means — $\mu_1 - \mu_2$
• Inference about two means — $\mu_1 - \mu_2$

• Standard error for $\bar{x}_1 - \bar{x}_2$:

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
• Inference about two means — $\mu_1 - \mu_2$

• Standard error for $\bar{x}_1 - \bar{x}_2$:

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

• Confidence interval for $\mu_1 - \mu_2$:
• Inference about two means — $\mu_1 - \mu_2$

• Standard error for $\bar{x}_1 - \bar{x}_2$:

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

• Confidence interval for $\mu_1 - \mu_2$:

$$\left((\bar{x}_1 - \bar{x}_2) - t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, (\bar{x}_1 - \bar{x}_2) + t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right)$$
• Inference about two means — $\mu_1 - \mu_2$
• Standard error for $\bar{x}_1 - \bar{x}_2$:

$$\sqrt{s_1^2 \frac{1}{n_1} + s_2^2 \frac{1}{n_2}}$$

• Confidence interval for $\mu_1 - \mu_2$:

$$\left((\bar{x}_1 - \bar{x}_2) - t^* \sqrt{s_1^2 \frac{1}{n_1} + s_2^2 \frac{1}{n_2}}, (\bar{x}_1 - \bar{x}_2) + t^* \sqrt{s_1^2 \frac{1}{n_1} + s_2^2 \frac{1}{n_2}} \right)$$

* t^* is determined by the confidence level C — the t-score corresponding to the upper tail $(1 - C)/2$
• Inference about two means — $\mu_1 - \mu_2$
• Standard error for $\bar{x}_1 - \bar{x}_2$:
 \[
 \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}
 \]
• Confidence interval for $\mu_1 - \mu_2$:
 \[
 * \left((\bar{x}_1 - \bar{x}_2) - t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, (\bar{x}_1 - \bar{x}_2) + t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right)
 \]
 * t^* is determined by the confidence level C — the t-score corresponding to the upper tail $(1 - C)/2$
 * degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$
• Inference about two means — \(\mu_1 - \mu_2 \)
• Inference about two means — $\mu_1 - \mu_2$
• Test of significance:

 - Hypotheses:
 - H_0: $\mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)
 - H_a: $\mu_1 > \mu_2$ — upper tail probability corresponding to t^*
 - H_a: $\mu_1 < \mu_2$ — lower tail probability corresponding to t^*
 - H_a: $\mu_1 \neq \mu_2$ — twice upper tail probability corresponding to $|t|$

 - Test statistics:
 - $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$

 - P-value:
 - P-value for H_0: $\mu_1 = \mu_2$
 - P-value for H_a: $\mu_1 > \mu_2$
 - P-value for H_a: $\mu_1 < \mu_2$
 - P-value for H_a: $\mu_1 \neq \mu_2$

 - Degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$

 - Significance level α and conclusion
• Inference about two means — $\mu_1 - \mu_2$
• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)
 * test statistics: $t = \bar{x}_1 - \bar{x}_2 \sqrt{s_1^2/n_1 + s_2^2/n_2}$
 * P-value:
 * degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$
 * H_a: $\mu > \mu_0$ — upper tail probability corresponding to t;
 * H_a: $\mu < \mu_0$ — lower tail probability corresponding to t;
 * H_a: $\mu \neq \mu_0$ — twice upper tail probability corresponding to $|t|$;
 * significance level α and conclusion
• Inference about two means — $\mu_1 - \mu_2$
• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)
 * test statistics: $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
• Inference about two means — $\mu_1 - \mu_2$

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: \mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)
 * test statistics: $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
 * P-value:
• Inference about two means — $\mu_1 - \mu_2$

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu_1 = \mu_2 \ (\mu_1 - \mu_2 = 0)$
 * test statistics: $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
 * P-value:
 * degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$
• Inference about two means — $\mu_1 - \mu_2$

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : \mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)
 * test statistics: $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
 * P-value:
 * degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to t
• Inference about two means — $\mu_1 - \mu_2$

• Test of significance:

 * hypotheses: H_0 v.s $H_a / H_0 : \mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)

 * test statistics: $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$

 * P-value:

 * degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to t
 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to t
• Inference about two means — $\mu_1 - \mu_2$

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: \mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)
 * test statistics: $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
 * P-value:
 * degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to t
 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to t
 * $H_a : \mu \neq \mu_0$ — twice upper tail probability corresponding to $|t|$
• Inference about two means — $\mu_1 - \mu_2$
• Test of significance:
 * hypotheses: H_0 v.s $H_a / H_0 : \mu_1 = \mu_2$ ($\mu_1 - \mu_2 = 0$)
 * test statistics: $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
 * P-value:
 * degrees of freedom: smaller of $n_1 - 1$ and $n_2 - 1$
 * $H_a : \mu > \mu_0$ — upper tail probability corresponding to t
 * $H_a : \mu < \mu_0$ — lower tail probability corresponding to t
 * $H_a : \mu \neq \mu_0$ — twice upper tail probability corresponding to $|t|$
 * significance level α and conclusion
• Inference about population proportion p — z-procedures
 (confidence interval & test of significance)
• Inference about population proportion p — z-procedures (confidence interval & test of significance)

• Sampling distribution of the sample proportion \hat{p} for an SRS:
• Inference about population proportion p — z-procedures (confidence interval & test of significance)

• Sampling distribution of the sample proportion \hat{p} for an SRS:
 * mean of \hat{p} equals the population proportion p
• Inference about population proportion p — z-procedures (confidence interval & test of significance)

• Sampling distribution of the sample proportion \hat{p} for an SRS:
 * mean of \hat{p} equals the population proportion p
 * standard deviation of \hat{p} equals $\sqrt{\frac{p(1-p)}{n}}$
• Inference about population proportion p — z-procedures (confidence interval & test of significance)

• Sampling distribution of the sample proportion \hat{p} for an SRS:
 * mean of \hat{p} equals the population proportion p
 * standard deviation of \hat{p} equals $\sqrt{\frac{p(1-p)}{n}}$
 * If the sample size is large, \hat{p} is approximately normal, i.e.
 $\hat{p} \overset{\text{approx}}{\sim} N(p, \sqrt{\frac{p(1-p)}{n}})$
• Inference about population proportion p — z-procedures
 (confidence interval & test of significance)
• Sampling distribution of the sample proportion \hat{p} for an SRS:
 * mean of \hat{p} equals the population proportion p
 * standard deviation of \hat{p} equals $\sqrt{\frac{p(1-p)}{n}}$
 * If the sample size is large, \hat{p} is approximately normal, i.e.
 $\hat{p} \approx N(p, \sqrt{\frac{p(1-p)}{n}})$
• Standard error of \hat{p}: $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
• Inference about population proportion p — z-procedures

* Large-sample confidence intervals:

$\left(\hat{p} - z^* \sqrt{\hat{p}(1-\hat{p})/n}, \hat{p} + z^* \sqrt{\hat{p}(1-\hat{p})/n} \right)$

* z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1-C)/2$.

* Use it only when $n\hat{p} \geq 15$ and $n(1-\hat{p}) \geq 15$.

* Plus four confidence intervals:

$\left(\tilde{p} - z^* \sqrt{\tilde{p}(1-\tilde{p})/n} + 4, \tilde{p} + z^* \sqrt{\tilde{p}(1-\tilde{p})/n} + 4 \right)$

* $\tilde{p} = \text{number of successes in the sample} + 2/n + 4$.

* Use it when the confidence level is at least 90% and the sample size n is at least 10.
• Inference about population proportion p — z-procedures
• Large-sample confidence intervals:

$\left(\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)$

z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$.

Use it only when $n\hat{p} \geq 15$ and $n(1 - \hat{p}) \geq 15$.

$\left(\tilde{p} - z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}}, \tilde{p} + z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}} \right)$

$\tilde{p} = \frac{\text{number of successes in the sample} + 2}{n + 4}$

Use it when the confidence level is at least 90% and the sample size n is at least 10.
• Inference about population proportion p — z-procedures

• Large-sample confidence intervals:

$$
\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \quad \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}
$$

z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$.

Use it only when $n\hat{p} \geq 15$ and $n(1 - \hat{p}) \geq 15$.

• Plus four confidence intervals:

$$
\tilde{p} - z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n} + 4}, \quad \tilde{p} + z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n} + 4}
$$

$\tilde{p} = \frac{\text{number of successes in the sample}}{n} + 2$.

Use it when the confidence level is at least 90% and the sample size n is at least 10.
• Inference about population proportion p — z-procedures

• Large-sample confidence intervals:
 \[
 \left(\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)
 \]
 * z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$
• Inference about population proportion \(p \) — z-procedures
• Large-sample confidence intervals:
 \[
 \left(\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)
 \]
 * \(z^* \) is determined by the confidence level \(C \) — the z-score corresponding to the upper tail \((1 - C)/2 \)
 * Use it only when \(n\hat{p} \geq 15 \) and \(n(1 - \hat{p}) \geq 15 \)
• Inference about population proportion \(p \) — z-procedures

• Large-sample confidence intervals:

\[
\left(\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)
\]

* \(z^* \) is determined by the confidence level \(C \) — the z-score corresponding to the upper tail \((1 - C)/2\)

* Use it only when \(n\hat{p} \geq 15 \) and \(n(1 - \hat{p}) \geq 15 \)

• Plus four confidence intervals:
• Inference about population proportion p — z-procedures

• Large-sample confidence intervals:

$$\left(\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)$$

* z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$

* Use it only when $n\hat{p} \geq 15$ and $n(1 - \hat{p}) \geq 15$

• Plus four confidence intervals:

$$\left(\tilde{p} - z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}}, \tilde{p} + z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}} \right)$$

* $\tilde{p} = \text{number of successes in the sample} + 2$
• Inference about population proportion p — z-procedures

• Large-sample confidence intervals:

$$\left(\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)$$

* z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$

* Use it only when $n\hat{p} \geq 15$ and $n(1 - \hat{p}) \geq 15$

• Plus four confidence intervals:

$$\left(\tilde{p} - z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}}, \tilde{p} + z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}} \right)$$

* $\tilde{p} = \frac{\text{number of successes in the sample} + 2}{n + 4}$
• Inference about population proportion p — z-procedures

• Large-sample confidence intervals:
 \[
 \left(\hat{p} - z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}, \hat{p} + z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \right)
 \]
 * z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$
 * Use it only when $n\hat{p} \geq 15$ and $n(1 - \hat{p}) \geq 15$

• Plus four confidence intervals:
 \[
 \left(\tilde{p} - z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}}, \tilde{p} + z^* \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n + 4}} \right)
 \]
 * $\tilde{p} = \frac{\text{number of successes in the sample} + 2}{n + 4}$
 * Use it when the confidence level is at least 90% and the sample size n is at least 10
• Inference about population proportion p — z-procedures
• Inference about population proportion p — z-procedures
• Test of significance:

H_0 vs H_a:

- H_0: $p = p_0$
- H_a: $p > p_0$ — upper tail probability corresponding to z
- H_a: $p < p_0$ — lower tail probability corresponding to z
- H_a: $p \neq p_0$ — twice upper tail probability corresponding to $|z|$

Significance level α and conclusion:

- Use this test when $np_0 \geq 10$ and $n(1 - p_0) \geq 10$
• Inference about population proportion p — z-procedures

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: p = p_0$

$z =$ $\hat{p} - p_0 \sqrt{p_0(1 - p_0)} n$

P-value:

$\star H_a: p > p_0$ — upper tail probability corresponding to z

$\star H_a: p < p_0$ — lower tail probability corresponding to z

$\star H_a: p \neq p_0$ — twice upper tail probability corresponding to $|z|$

\star significance level α and conclusion

\star use this test when $np_0 \geq 10$ and $n(1 - p_0) \geq 10$
• Inference about population proportion p — z-procedures

• Test of significance:
 * hypotheses: H_0 v.s H_a \(H_0 : p = p_0 \)
 * test statistics: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$

\(\star \) use this test when $np_0 \geq 10$ and $n(1-p_0) \geq 10$
• Inference about population proportion p — z-procedures

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : p = p_0$
 * test statistics: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
 * P-value: \star
• Inference about population proportion p — z-procedures

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : p = p_0$
 * test statistics: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
 * P-value:
 * $H_a : p > p_0$ — upper tail probability corresponding to z
• Inference about population proportion p — z-procedures

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : p = p_0$
 * test statistics: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
 * P-value:
 * $H_a : p > p_0$ — upper tail probability corresponding to z
 * $H_a : p < p_0$ — lower tail probability corresponding to z
• Inference about population proportion p — z-procedures

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : p = p_0$
 * test statistics: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
 * P-value:
 * $H_a : p > p_0$ — upper tail probability corresponding to z
 * $H_a : p < p_0$ — lower tail probability corresponding to z
 * $H_a : p \neq p_0$ — twice upper tail probability corresponding to $|z|$
• Inference about population proportion p — z-procedures

• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : p = p_0$
 * test statistics: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
 * P-value:
 * $H_a : p > p_0$ — upper tail probability corresponding to z
 * $H_a : p < p_0$ — lower tail probability corresponding to z
 * $H_a : p \neq p_0$ — twice upper tail probability corresponding to $|z|$
 * significance level α and conclusion
• Inference about population proportion p — z-procedures
• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : p = p_0$
 * test statistics: $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
 * P-value:
 * $H_a : p > p_0$ — upper tail probability corresponding to z
 * $H_a : p < p_0$ — lower tail probability corresponding to z
 * $H_a : p \neq p_0$ — twice upper tail probability corresponding to $|z|$
 * significance level α and conclusion
 * use this test when $np_0 \geq 10$ and $n(1 - p_0) \geq 10$
• Inference about two proportions — $p_1 - p_2$
• Inference about two proportions — $p_1 - p_2$
• Sampling distribution of $\hat{p}_1 - \hat{p}_2$:
• Inference about two proportions — $p_1 - p_2$
• Sampling distribution of $\hat{p}_1 - \hat{p}_2$:
 * mean of $\hat{p}_1 - \hat{p}_2$ is $p_1 - p_2$
• Inference about two proportions — $p_1 - p_2$

• Sampling distribution of $\hat{p}_1 - \hat{p}_2$:
 * mean of $\hat{p}_1 - \hat{p}_2$ is $p_1 - p_2$
 * standard deviation of $\hat{p}_1 - \hat{p}_2$ is

$$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$
• Inference about two proportions — $p_1 - p_2$

• Sampling distribution of $\hat{p}_1 - \hat{p}_2$:
 * mean of $\hat{p}_1 - \hat{p}_2$ is $p_1 - p_2$
 * standard deviation of $\hat{p}_1 - \hat{p}_2$ is
 \[\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}\]
 * If the sample size is large, $\hat{p}_1 - \hat{p}_2$ is approximately normal
• Inference about two proportions — \(p_1 - p_2 \)

• Sampling distribution of \(\hat{p}_1 - \hat{p}_2 \):
 * mean of \(\hat{p}_1 - \hat{p}_2 \) is \(p_1 - p_2 \)
 * standard deviation of \(\hat{p}_1 - \hat{p}_2 \) is
 \[
 \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}
 \]
 * If the sample size is large, \(\hat{p}_1 - \hat{p}_2 \) is approximately normal

• Standard error of \(\hat{p} \):
 \[
 \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}
 \]
• Inference about two proportions — $p_1 - p_2$
• Inference about two proportions — $p_1 - p_2$
• Large-sample confidence intervals:
• Inference about two proportions — $p_1 - p_2$

• Large-sample confidence intervals:

$$\left((\hat{p}_1 - \hat{p}_2) - z^*SE, (\hat{p}_1 + \hat{p}_2) + z^*SE \right),$$

where SE is the standard error of $\hat{p}_1 - \hat{p}_2$:

$$SE = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$.
• Inference about two proportions — $p_1 - p_2$
• Large-sample confidence intervals:

 * $\left(\hat{p}_1 - \hat{p}_2 - z^*SE, (\hat{p}_1 + \hat{p}_2) + z^*SE \right)$, where SE is the standard error of $\hat{p}_1 - \hat{p}_2$:

 $$SE = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

 * z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$
• Inference about two proportions — $p_1 - p_2$

• Large-sample confidence intervals:
 \[
 \left((\hat{p}_1 - \hat{p}_2) - z^*SE, (\hat{p}_1 + \hat{p}_2) + z^*SE \right), \text{ where } SE \text{ is the standard error of } \hat{p}_1 - \hat{p}_2:
 \]

 \[
 SE = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}
 \]

 * z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$
 * Use it only when $n\hat{p} \geq 10$ and $n(1 - \hat{p}) \geq 10$
• Inference about two proportions — $p_1 - p_2$

• Large-sample confidence intervals:

 $\left((\hat{p}_1 - \hat{p}_2) - z^*SE, (\hat{p}_1 + \hat{p}_2) + z^*SE \right)$, where SE is the standard error of $\hat{p}_1 - \hat{p}_2$:

 \[
 SE = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}
 \]

 * z^* is determined by the confidence level C — the z-score corresponding to the upper tail $(1 - C)/2$

 * Use it only when $n\hat{p} \geq 10$ and $n(1 - \hat{p}) \geq 10$
• Inference about two proportions — $p_1 - p_2$
• Inference about two proportions — \(p_1 - p_2 \)
• Plus four confidence intervals:

\[
\left(\hat{p}_1 - \hat{p}_2 \right) - z^\star \text{SE}, \quad \left(\hat{p}_1 + \hat{p}_2 \right) + z^\star \text{SE},
\]
where SE is the standard error of \(\hat{p}_1 - \hat{p}_2 \):

\[
\text{SE} = \sqrt{\frac{\hat{p}_1 (1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2 (1 - \hat{p}_2)}{n_2} + \frac{1}{2}},
\]

\(\hat{p}_i \) = number of successes in the \(i \)th sample + 1

\(n_i \) = number of successes in the \(i \)th sample + 2,

\(i = 1, 2 \)

Use it when \(n_1 \geq 5 \) and \(n_2 \geq 5 \)
• Inference about two proportions — \(p_1 - p_2 \)
• Plus four confidence intervals:
 \[
 * \left((\hat{p}_1 - \hat{p}_2) - z^*SE, (\hat{p}_1 + \hat{p}_2) + z^*SE \right),
 \]
 where SE is the standard error of \(\hat{p}_1 - \hat{p}_2 \):

 \[
 SE = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1 + 2} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2 + 2}}
 \]
• Inference about two proportions — \(p_1 - p_2 \)

• Plus four confidence intervals:
 \[
 (\hat{p}_1 - \hat{p}_2) - z^*SE, (\hat{p}_1 + \hat{p}_2) + z^*SE
 \]
 where SE is the standard error of \(\hat{p}_1 - \hat{p}_2 \):
 \[
 SE = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1 + 2} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2 + 2}}
 \]
 \[
 \hat{p}_i = \frac{\text{number of successes in the } i \text{ th sample} + 1}{n_i + 2}, \ i = 1, 2
 \]
Inference about two proportions — \(p_1 - p_2 \)

Plus four confidence intervals:

\[
(\hat{p}_1 - \hat{p}_2) - z^*SE, \ (\hat{p}_1 + \hat{p}_2) + z^*SE
\]

where SE is the standard error of \(\hat{p}_1 - \hat{p}_2 \):

\[
SE = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1 + 2} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2 + 2}}
\]

\[
\hat{p}_i = \frac{\text{number of successes in the } i \text{ th sample} + 1}{n_i + 2}, \ i = 1, 2
\]

Use it when \(n_1 \geq 5 \) and \(n_2 \geq 5 \)
Test of significance:

- Hypotheses:

 \[H_0 \text{ v.s } H_a \]

 \[p_1 = p_2 (p_1 - p_2 = 0) \]

- Pooled sample proportion \(\hat{p} \):

 \[\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}} \]

- Test statistic:

 \[z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \]

- \(P \)-value:

 \(\star \)

 \[H_a : p_1 - p_2 > 0 \] — upper tail probability corresponding to \(z \)

 \[H_a : p_1 - p_2 < 0 \] — lower tail probability corresponding to \(z \)

 \[H_a : p_1 - p_2 \neq 0 \] — twice upper tail probability corresponding to \(|z| \)

- Significance level \(\alpha \) and conclusion

- Use this test when counts of successes and failures are each 5 or more in both samples.
• Test of significance:
 * hypotheses: $H_0 \text{ v.s } H_a / H_0: p_1 = p_2 (p_1 - p_2 = 0)$
• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0 : p_1 = p_2$ ($p_1 - p_2 = 0$)
 * pooled sample proportion \hat{p}:
 $$\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$$
 * test statistic:
 $$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
 * P-value:
 * H_a: $p_1 - p_2 > 0$ — upper tail probability corresponding to z
 * H_a: $p_1 - p_2 < 0$ — lower tail probability corresponding to z
 * H_a: $p_1 - p_2 \neq 0$ — twice upper tail probability corresponding to $|z|$
 * significance level α and conclusion
 * use this test when counts of successes and failures are each 5 or more in both samples
• Test of significance:
* hypotheses: H_0 v.s H_a / $H_0: p_1 = p_2$ ($p_1 - p_2 = 0$)
* pooled sample proportion \hat{p}:
$$\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$$
* test statistics:
$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

* P-value:
 - H_a: $p_1 - p_2 > 0$ — upper tail probability corresponding to z
 - H_a: $p_1 - p_2 < 0$ — lower tail probability corresponding to z
 - H_a: $p_1 - p_2 \neq 0$ — twice upper tail probability corresponding to $|z|$

* significance level α and conclusion

* use this test when counts of successes and failures are each 5 or more in both samples
• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: p_1 = p_2$ ($p_1 - p_2 = 0$)
 * pooled sample proportion \hat{p}:
 $$\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$$
 * test statistics:
 $$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
 * P-value:
Test of significance:

* hypotheses: H_0 v.s H_a / $H_0: p_1 = p_2$ ($p_1 - p_2 = 0$)

* pooled sample proportion \hat{p}:

$$\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$$

* test statistics: $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$

* P-value:

 * $H_a: p_1 - p_2 > 0$ — upper tail probability corresponding to z

 * $H_a: p_1 - p_2 \neq 0$ — twice upper tail probability corresponding to $|z|$

 * α and conclusion

* use this test when counts of successes and failures are each 5 or more in both samples
• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: p_1 = p_2$ ($p_1 - p_2 = 0$)
 * pooled sample proportion \hat{p}:

 $\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$

 * test statistics: $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$

 * P-value:
 * $H_a: p_1 - p_2 > 0$ — upper tail probability corresponding to z
 * $H_a: p_1 - p_2 < 0$ — lower tail probability corresponding to z

 * use this test when counts of successes and failures are each 5 or more in both samples
Test of significance:

* hypotheses: H_0 v.s $H_a / H_0: p_1 = p_2$ ($p_1 - p_2 = 0$)
* pooled sample proportion \hat{p}:

$$\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$$

* test statistics:

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

* P-value:

* $H_a: p_1 - p_2 > 0$ — upper tail probability corresponding to z
* $H_a: p_1 - p_2 < 0$ — lower tail probability corresponding to z
* $H_a: p_1 - p_2 \neq 0$ — twice upper tail probability corresponding to $|z|$
Test of significance:

* hypotheses: \(H_0 \) v.s \(H_a \) / \(H_0 : p_1 = p_2 \ (p_1 - p_2 = 0) \)

* pooled sample proportion \(\hat{p} \):

\[
\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}
\]

* test statistics:

\[
z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}
\]

* \(P \)-value:

* \(H_a : p_1 - p_2 > 0 \) — upper tail probability corresponding to \(z \)

* \(H_a : p_1 - p_2 < 0 \) — lower tail probability corresponding to \(z \)

* \(H_a : p_1 - p_2 \neq 0 \) — twice upper tail probability corresponding to \(|z| \)

* significance level \(\alpha \) and conclusion
• Test of significance:
 * hypotheses: H_0 v.s H_a / $H_0: p_1 = p_2$ ($p_1 - p_2 = 0$)
 * pooled sample proportion \hat{p}:
 $$\hat{p} = \frac{\text{number of successes in both samples combined}}{\text{number of individuals in both samples combined}}$$
 * test statistics: $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$
 * P-value:
 * $H_a: p_1 - p_2 > 0$ — upper tail probability corresponding to z
 * $H_a: p_1 - p_2 < 0$ — lower tail probability corresponding to z
 * $H_a: p_1 - p_2 \neq 0$ — twice upper tail probability corresponding to $|z|$
 * significance level α and conclusion
 * use this test when counts of successes and failures are each 5 or more in both samples
Variables - Categorical v.s. Quantitative
• Variables - Categorical v.s. Quantitative
• Graphs for distributional information: Pie chart, Bar graph, Histogram, Stemplot, Timeplot, Boxplot
• Variables - Categorical v.s. Quantitative
• Graphs for distributional information: Pie chart, Bar graph, Histogram, Stemplot, Timeplot, Boxplot
• Overall pattern of the graph: Symmetric/Skewed, Center, Spread, Outlier, Trend
• Measure of center: Mean/Median
• Measure of center: Mean/Median
• Measure of variability: Quartiles (Q_1, Q_2, Q_3), Range, IQR, 1.5×IQR rule, Outlier, Variance, Standard deviation
- Measure of center: Mean/Median
- Measure of variability: Quartiles \((Q_1, Q_2, Q_3)\), Range, IQR, \(1.5 \times \text{IQR}\) rule, Outlier, Variance, Standard deviation
- Five-number summary, Boxplot
• Density curve
• Density curve
• Normal distributions / Normal curves
• Density curve
• Normal distributions / Normal curves
• z-score, Standard normal distribution
• Density curve
• Normal distributions / Normal curves
• z-score, Standard normal distribution
• 68 – 95 – 99.7 rule, Probabilities for normal distribution
• Explanatory variable / Response variable
• Explanatory variable / Response variable
• Scatterplot: Direction (Positive / Negative), Form (Linear / Nonlinear), Strength, Outlier
• Explanatory variable / Response variable
• Scatterplot: Direction (Positive / Negative), Form (Linear / Nonlinear), Strength, Outlier
• Correlation
• Linear regression: \(\hat{y} = a + bx \); Slope \(b \), Intercept \(a \), Predication
• Linear regression: \(\hat{y} = a + bx; \) Slope \(b \), Intercept \(a \), Predication

• Correlation and regression, \(r^2 \), Residual
• Linear regression: \(\hat{y} = a + bx \); Slope \(b \), Intercept \(a \), Predication

• Correlation and regression, \(r^2 \), Residual

• Cautions for regression: Influential observations, Extrapolation, Lurking variables
• Sample / Population
• Sample / Population
• Random sampling design: Simple random sample (SRS), Stratified random sample, Multistage sample
• Sample / Population
• Random sampling design: Simple random sample (SRS), Stratified random sample, Multistage sample
• Bad samples: Voluntary response sample, Convenience sample
• Observational studies & Experimental studies (experiments)
• Observational studies & Experimental studies (experiments)
• Treatments / Factors
• Observational studies & Experimental studies (experiments)
• Treatments / Factors
• Design of experiments:
• Observational studies & Experimental studies (experiments)
• Treatments / Factors
• Design of experiments:
 control (comparison, placebo)
• Observational studies & Experimental studies (experiments)
• Treatments / Factors
• Design of experiments:
 control (comparison, placebo)
 randomization (table of random digits, double-blind)
• Observational studies & Experimental studies (experiments)
• Treatments / Factors
• Design of experiments:
 control (comparison, placebo)
 randomization (table of random digits, double-blind)
 matched pairs design / Block design
• Probability: Sample space \((S)\) & Events

• Rules for probability model:
 1. For any event \(A\), \(0 \leq P(A) \leq 1\)
 2. For sample space \(S\), \(P(S) = 1\)
 3. If two events \(A\) and \(B\) are disjoint, then \(P(A \text{ or } B) = P(A) + P(B)\)
 4. For any event \(A\), \(P(A \text{ does not occur}) = 1 - P(A)\)

• Discrete probability models / Continuous probability models
• Random variables / Distributions
• Probability: Sample space \((S)\) & Events
• Rules for probability model:
• Probability: Sample space (S) & Events
• Rules for probability model:
 1. for any event A, $0 \leq P(A) \leq 1$
• Probability: Sample space \((S)\) & Events
• Rules for probability model:
 1. for any event \(A\), \(0 \leq P(A) \leq 1\)
 2. for sample space \(S\), \(P(S) = 1\)
- Probability: Sample space \((S)\) & Events
- Rules for probability model:
 1. for any event \(A\), \(0 \leq P(A) \leq 1\)
 2. for sample space \(S\), \(P(S) = 1\)
 3. if two events \(A\) and \(B\) are disjoint, then
 \[P(A \text{ or } B) = P(A) + P(B) \]
• Probability: Sample space \((S)\) & Events
• Rules for probability model:
 1. for any event \(A\), \(0 \leq P(A) \leq 1\)
 2. for sample space \(S\), \(P(S) = 1\)
 3. if two events \(A\) and \(B\) are disjoint, then
 \[P(A \text{ or } B) = P(A) + P(B)\]
 4. for any event \(A\), \(P(A \text{ does not occur}) = 1 - P(A)\)
• Probability: Sample space (S) & Events
• Rules for probability model:
 1. for any event A, $0 \leq P(A) \leq 1$
 2. for sample space S, $P(S) = 1$
 3. if two events A and B are disjoint, then
 $P(A \text{ or } B) = P(A) + P(B)$
 4. for any event A, $P(A \text{ does not occur}) = 1 - P(A)$
• Discrete probability models / Continuous probability models
Probability: Sample space (S) & Events

Rules for probability model:
1. for any event A, $0 \leq P(A) \leq 1$
2. for sample space S, $P(S) = 1$
3. if two events A and B are disjoint, then $P(A \text{ or } B) = P(A) + P(B)$
4. for any event A, $P(A \text{ does not occur}) = 1 - P(A)$

Discrete probability models / Continuous probability models
Random variables / Distributions
• Population / Sample; Parameters / Statistics
 \(\mu / \bar{x}, \sigma / s, p / \hat{p} \)
• Population / Sample; Parameters / Statistics
 \[\mu \ / \ \bar{x}, \ \sigma \ / \ s, \ \rho \ / \ \hat{p} \]
• Statistics are random variables
• Population / Sample; Parameters / Statistics
 \[\mu / \bar{x}, \sigma / s, p / \hat{p} \]

• Statistics are random variables

• Sampling distribution of the sample mean \(\bar{x} \) for an SRS:
• Population / Sample; Parameters / Statistics
 \(\mu / \bar{x}, \sigma / s, p / \hat{p}\)
• Statistics are random variables
• Sampling distribution of the sample mean \(\bar{x}\) for an SRS:
 * mean of \(\bar{x}\) equals the population mean \(\mu\)
• Population / Sample; Parameters / Statistics
 \(\mu / \bar{x}, \sigma / s, p / \hat{p} \)

• Statistics are random variables

• Sampling distribution of the sample mean \(\bar{x} \) for an SRS:
 * mean of \(\bar{x} \) equals the population mean \(\mu \)
 * standard deviation of \(\bar{x} \) equals \(\frac{\sigma}{\sqrt{n}} \), where \(\sigma \) is the population standard deviation and \(n \) is the sample size
• Population / Sample; Parameters / Statistics
 $\mu / \bar{x}, \sigma / s, p / \hat{p}$

• Statistics are random variables

• Sampling distribution of the sample mean \bar{x} for an SRS:
 * mean of \bar{x} equals the population mean μ
 * standard deviation of \bar{x} equals $\frac{\sigma}{\sqrt{n}}$, where σ is the population standard deviation and n is the sample size
 * if the population has a normal distribution, then $\bar{x} \sim N(\mu, \sigma/\sqrt{n})$
• Population / Sample; Parameters / Statistics
 \(\mu / \bar{x}, \sigma / s, p / \hat{p} \)
• Statistics are random variables
• Sampling distribution of the sample mean \(\bar{x} \) for an SRS:
 * mean of \(\bar{x} \) equals the population mean \(\mu \)
 * standard deviation of \(\bar{x} \) equals \(\frac{\sigma}{\sqrt{n}} \), where \(\sigma \) is the population standard deviation and \(n \) is the sample size
 * if the population has a normal distribution, then \(\bar{x} \sim N(\mu, \sigma/\sqrt{n}) \)
 * **central limit theorem**: if the sample size is large (\(n \geq 30 \)), then \(\bar{x} \) is approximately normal, i.e. \(\bar{x} \approx \bar{x} \sim N(\mu, \sigma/\sqrt{n}) \)