Solving the Frenet System,
for prescribed curvature and torsion functions
Math 4530 Spring 02

[> restart:

The name changecoords has been redefined

Here’s a pretty self-explanatory procedure which solves the Frenet system, taken more or less from the text.

[> recreate3dview:=proc(kap,ta,a,b,c,d,e,f,g,h)
 #kap=curvature,ta=torsion
 #arclength parameter from a to b
 #c..d, e..f, g..h are x-y-z ranges for plot
 local
 sys, #the Frenet system
 p , #dummy for ODE solution to Frenet system
 ics, #initial conditions
 p1; #name for ODEplot of p
 sys:=
 diff(alph1(s),s)=T1(s),
 diff(alph2(s),s)=T2(s),
 diff(alph3(s),s)=T3(s),
 diff(T1(s),s)=kap(s)*N1(s),
 diff(T2(s),s)=kap(s)*N2(s),
 diff(T3(s),s)=kap(s)*N3(s),
 diff(N1(s),s)=-kap(s)*T1(s)+ta(s)*B1(s),
 diff(N2(s),s)=-kap(s)*T2(s)+ta(s)*B2(s),
 diff(N3(s),s)=-kap(s)*T3(s)+ta(s)*B3(s),
 diff(B1(s),s)=-ta(s)*N1(s),
 diff(B2(s),s)=-ta(s)*N2(s),
 diff(B3(s),s)=-ta(s)*N3(s);
 ics:=
 alph1(0)=0,alph2(0)=0,alph3(0)=0,
 T1(0)=1,T2(0)=0,T3(0)=0,
 N1(0)=0,N2(0)=1,N3(0)=0,
 B1(0)=0,B2(0)=0,B3(0)=1;
 p:=dsolve({sys,ics},{alph1(s),alph2(s),alph3(s),
 T1(s),T2(s),T3(s),N1(s),N2(s),N3(s),
 B1(s),B2(s),B3(s)},type=numerical);
 p1:=odeplot(p,[alph1(s),alph2(s),alph3(s)],a..b,
 numpoints=200,thickness=1,axes=boxed,color=black):
 display(p1,scaling=constrained,view=[c..d,e..f,g..h]);
end:

Here are some examples:
Example 1: A helix, with constant curvature and torsion
[> kap1:=s->.2*s;
 tor1:=s->.5;
 kap1 := s → .2 s
\[tor1 := 0.5 \]

\[> \text{recreate3dview}({\text{kap1}}, \{\text{tor1}, 0, 20, -2, 8, -5, 5, -5, 5\}); \]