\[f(z) = \sqrt{z^2 - 1} = \sqrt{z - 1} \sqrt{z - e^{2\pi i}} \sqrt{z - e^{-2\pi i}} \]

So could do something like

\[\theta_1 = \text{ang}(z - 1) \]
\[\theta_2 = \text{ang}(z - e^{2\pi i}) \]
\[\theta_3 = \text{ang}(z - e^{-2\pi i}) \]

alternately, you could try the composition trick: Pick a
branch of \(\sqrt{w} \) and then see if this branch lets you work back to a
good domain for \(f \). (\(\mathbb{C} \setminus \text{finite rays} \) and \(\text{rays} \), still connected).

If you happen upon

\[g(z) = z^3 - 1 \]
\[z^3 \in [1, \infty) \]
\[z^3 \in (0, \infty) \]

\[\text{iff } z = r e^{i\theta} \]
\[r > 1 \]
\[\theta = 0, 2\pi/3, -2\pi/3 \]

thus inverse image of branch cut is exactly one \(\sqrt[3]{\text{th}} \) preimage!

\[f(z) = \sqrt{g(z)} \]
\[f'(z) = \frac{1}{2} (z^2 - 1)^{-1/2} \]

b) any branch of \(\sqrt{z} \) works, because \(\sin(w) \) is entire.

\[\sin(z) = \sin(z^2) \]

\[\sin(z^2) = (\cos(z^2) - z^2) \]
14. \(f(z) = \sqrt{1 + \sqrt{z}} \)

\[z = |r| e^{i \theta} \]

\[r = \sqrt{1 + \sqrt{1 + |z|}} \]

\[\theta = \arg z \]

\[-\pi < \theta < \pi \]

\[f'(z) = \frac{1}{2} \left(1 + \frac{1}{\sqrt{z}} \right) \frac{1}{2} e^{-i \theta} \]

where we make the same choices of argument.
2.1 2a) \[\int \frac{x}{y} \, dz \]

\[y_1 \]

\[y_2 \]

\[y_1 \]

\[y_2 \]

\[z = xy \]

\[0 \leq y \leq 1 \]

\[\int_0^1 (1) \, dy = 0 \]

\[\int x \, dz = 4 - \] \[\int_0^2 x \, \frac{y^2}{2} \, dy = 4 \]

So \(\int x \, dz = 4 \)

2c) \[\int \frac{1}{z-1} \, dz \]

\[\gamma = \text{circle of radius } 2, \text{ centered at } 0, \text{ c.c.} \]

\[\gamma(t) = 1 + 2e^{it}, \quad 0 \leq t \leq 2\pi \]

\[\gamma'(t) = 2ie^{it} \]

\[\int_0^{2\pi} \frac{1}{2e^{it}} \, 2ie^{it} \, dt = \pi \]

3. \[\int \frac{1}{z} \, dz \]

\[\gamma = \text{circle of radius } 1, \text{ centered at } 2, \text{ c.c.} \]

\[\log z = \ln |z| + i \arg z \quad -\pi < \arg z < \pi \]

which is an open region containing \(\gamma \)

Since \((\log z)' = \frac{1}{z} \)

and since \(\gamma \) is closed,

you can do this by parameterizing \(\gamma \),

but it is very painful.

\[\int_\gamma \frac{1}{z} \, dz = 0. \]

5. \[\oint \gamma (z^2 - 1) \, dz = \oint \gamma \, (dx + i\, dy) \]

\[\oint \gamma \, (udx - vdy + i \, vdx +udy) \]

\[\nexists \]

So \(\Re(\oint f(z) \, dz) = \oint \gamma (udx + vdy) \)

\[\nexists \]

these are almost never equal.

(Counterexamples easy, i.e., \(\Re(\gamma) = \cos t \), \(\Re(\gamma) = \sin t \))

On the other hand, \(\oint \Re f(z) \, dz = \oint \Re \, (dx + i\, dy) = \oint \Re \, (udx + i\, vdy) \)

then \(\Re(\oint f(z) \, dz) = \oint \Re \, (udx + vdy) \)

\[\Re(\gamma) = \cos t \]

\[0 \leq t \leq 1 \]

\[u = 0 \]

\[v = 1 \]

\[\Re(\gamma) = \sin t \]

\[\Re(\gamma) = \sin t \]

\[\Re(\gamma) = \sin t \]
11. a) \[\int \frac{dz}{z} = \int \frac{1}{e^{it}} \cdot e^{i2t} \, dt = \int_0^{2\pi} e^{i2t} \, dt = 2\pi i \]

\[2 = e^{i2}\]
\[\frac{dz}{z} = e^{i2} \, dt\]

\[\text{use this for all of 11a) if necessary}\]

\[\int \frac{dz}{z_1} = \int_0^{2\pi} e^{i2} \, dt = \frac{2\pi}{0} = 0\]

\[\int \frac{1 |dz|}{z_1} = \int_0^{2\pi} |e^{i2}| \, dt = \int_0^{2\pi} e^{-i2} \, dt = -e^{-i2}\]

\[\int \frac{|dz|}{z_1} = \text{Circum} = 2\pi\]

b) \[\int_0^{2\pi} z^2 \, dz = \int_0^{2\pi} \left(\frac{2\pi}{3} \right) e^{i2} \, dt = \frac{2\pi}{3} e^{i2} \int_0^{2\pi} = -\frac{1}{3}\]

13. \[\int_0^{2\pi} 2 \sin^2 \theta \, d\theta = -\frac{1}{2} \cos 2\theta \]

14. \[\int_\gamma \frac{1}{z} \, dz = 0\]

The closed curve \(\gamma\) will equal zero if \(\gamma\) lies within a domain \(A\) on which \(\log z\) has a branch.

- e.g. the standard branch of \(\log z = \ln |z| + \text{arg} z\)

\[-\pi < \text{arg} z < \pi\]

\[\gamma \subset \{ x \in \mathbb{R}, x > 0 \}\]

Since then \[\int_\gamma \frac{1}{z} \, dz = \log z \bigg|_\gamma = 0\]

We will discuss this question precisely in §2.4.
1. a) \[\int_{-1}^{1} \frac{x^2 + 3}{x^4 + 3x^2 + 1} \, dx = \frac{1}{2} + 3 - \left(\frac{1}{2} - 3 \right) = 0 \]

b) \(\int_{\gamma} 2z + 3 \, dz = 0 \) because \(\gamma \) is closed and \(2z + 3 \) has an antiderivative.

d) \(\int_{\gamma} \cos \left(3 + \frac{1}{z-3} \right) \, dz = 0 \) because \(\gamma \) is contained in \(A = \{ z \in \mathbb{C} : \text{ Re } x < -3 \} \)
which is simply connected.

Thus, analytic \(f(z) = \cos \left(3 + \frac{1}{z-3} \right) \)
has an antiderivative in \(A \),
so the contour integral is zero, since \(\gamma \) is closed.

2. \(\int_{\gamma} \frac{1}{z} \, dz = 0 \) for any \(\gamma \) with image in \(A = \{ z \in \mathbb{C} : \text{ Re } z < 0 \} \)
because \(\frac{1}{z} \) has an antiderivative \(-\frac{1}{z} \).

3. \(\int_{0}^{2\pi} f(z_0 + re^{i\theta}) e^{kr} \, d\theta \)
if we can write this as a contour integral of some entire
function around a closed contour, then the value is 0.

Parameterize the circle \(|z - z_0| = r \) (assume \(r > 0 \), although you could also consider \(r = 0, r < 0 \)).

\[dz = r e^{i\theta} \, d\theta \]
\[z - z_0 = r e^{i\theta} \].
Thus, \(\int_{0}^{2\pi} f(z_0 + re^{i\theta}) \frac{kr}{e^{i\theta}} \, d\theta = \int_{0}^{2\pi} f(z) \frac{(z - z_0)^{k-1}}{e^{(k-1)i\theta}} \, d\theta \)
= \frac{1}{e^{i\theta}} \int_{\gamma} f(z) \frac{(z - z_0)^{k-1}}{e^{i\theta}} \, dz = k = 1, 2, \ldots
this sum is entire, so the contour integral is 0.

4. A "looks" simply connected,
so we know a branch \(g \) of \(\log z \) exists.

More explicitly:

6. You could parameterize, but

\[\int_{\gamma} z - \frac{1}{z} \, dz = \frac{2\pi}{i} - \log z \]
\[= -\frac{1}{i} - (\text{ln}(1 + i\pi/2) - i(\text{ln}(1 + i\pi/2) + i(\pi/2)) \]
\[= -1 - i \frac{\pi}{2} \]
Solution to class exercise:

\[Y(t) = y(h(t)) \]
\[X(t) = \tilde{y}(h(t)) \]

\[\int_{a}^{b} f(z) \, dz = \int_{c}^{d} f(\tilde{y}(h(t))) \tilde{y}'(h(t)) \, dt \quad \forall \]

is a real calc I integral + \(i \) times another real calc I integral.

so usual substitution works.

\[t = h(t) \quad \Rightarrow \quad \frac{dt}{dh} = h'(t) \]
\[d\tilde{y} = h'(t) \, dt \]

\[x = \int_{k(c)}^{k(d)} f(\tilde{y}(h(t))) \tilde{y}'(h(t)) \, dt \]

Case I: \(k(c) = a \quad \text{and} \quad k(d) = b \)
\[x = \int_{a}^{b} f(\tilde{y}(h(t))) \tilde{y}'(h(t)) \, dt = \int_{a}^{b} f(z) \, dz \]

Case II: \(k(c) = b \quad \text{and} \quad k(d) = a \)
\[x = \int_{b}^{a} f(\tilde{y}(h(t))) \tilde{y}'(h(t)) \, dt = -\int_{a}^{b} f(x) \, dx \]
\[= -\int_{a}^{b} f(z) \, dz \]