2.2: applications of population models.

week 4.1 Consider a bioreactor used by a yogurt factory to grow the bacteria needed to make yogurt. The growth of the bacteria is governed by the logistic equation

\[
\frac{dP}{dt} = k \cdot P(M - P)
\]

where \(P \) is the population in millions and \(t \) is the time in days. Recall that \(M \) is the carrying capacity of the reactor, and \(k \) is a constant that depends on the growth rate.

a) Through observation it is found that after a long time the population in the reactor stabilizes at 50 million bacteria, and that when the population of the reactor is 20 million bacteria the population increases at a rate of 12 million per day. From this, find \(k \) and \(M \) in the governing equation.

b) If the colony starts with a population of 10 million bacteria, how long will it take for the population to reach 80% of carrying capacity?

c) Suppose the factory harvests the bacteria from the reactor once a week. The harvesting process takes a day, during which the reactor is not operational, leaving 6 days per week for the bacteria to grow in the reactor. The factory wants to maximize the amount of bacteria grown during these 6 days. To achieve this, \(P'(t) \) should be at its maximum 3 days after harvesting. What initial population (after harvesting) gives the most growth over the 6-day period? What is the population change during this time?

d) Suppose the reactor is modified to allow for continual harvesting without shutting down the reactor. Let \(h \) be the rate at which the bacteria are harvested, in millions per day. Write down the new differential equation governing the bacteria population. What is the maximum rate of harvesting \(h \) that will not cause the population of bacteria to go extinct? (Harvesting at less than this rate will ensure that there is always a stable equilibrium point where \(P \) is positive.)

2.3: improved velocity-acceleration models:

- constant, or constant plus linear drag forcing: 2, 3, 9, 10, 12
- quadratic drag: 13, 14, 17
- escape velocity: 25, 26.
2.4-2.6: numerical methods for approximating solutions to first order initial value problems.
2.4: 4: Euler's method
2.5: 4: improved Euler
2.6: 4: Runge-Kutta

week 4.2) Runge-Kutta is based on Simpson's rule for numerical integration. Simpson's rule is based on the fact that for a subinterval of length $2h$, which by translation we may assume is the interval $-h \leq x \leq h$, the parabola $y = p(x)$ which passes through the points $(-h, y_0), (0, y_1), (h, y_2)$ has integral

$$\int_{-h}^{h} p(x) \, dx = \frac{2h}{6} \cdot (y_0 + 4y_1 + y_2).$$

If we write the quadratic interpolant function $p(x)$ whose graph is this parabola as $p(x) = ax^2 + bx + c$ with unknown parameters a, b, c then since we want $p(0) = y_1$ we solve $y_1 = p(0) = 0 + 0 + c$ to deduce that $c = y_1$.

a) Use the requirement that the graph of $p(x)$ is also to pass through the other two points, $(-h, y_0), (h, y_2)$ to express a, b in terms of h, y_0, y_1, y_2.

b) Compute $\int_{-h}^{h} p(x) \, dx$ for these values of a, b, c and verify equation (1) above.

Remark: If you've forgotten, or if you never talked about Simpson's rule in your Calculus class, here's how it goes: In order to approximate the definite integral of $f(x)$ on the interval $[a, b]$, you subdivide $[a, b]$ into $2n = N$ subintervals of width $\Delta x = \frac{b-a}{2n} = h$. Label the x-values $x_0 = a, x_1 = a + h, x_2 = a + 2h, \ldots, x_{2n} = b$, with corresponding y-values $y_i = f(x_i), i = 0, \ldots, n$. On each successive pair of intervals use the stencil above, estimating the integral of f by the integral of the parabola. This yields the very accurate (for large enough n) Simpson's rule formula

$$\int_{a}^{b} f(x) \, dx \approx \frac{2h}{6} \left((y_0 + 4y_1 + y_2) + (y_2 + 4y_3 + y_4) + \ldots + (y_{2n-2} + 4y_{2n-1} + y_{2n}) \right);$$

i.e.

$$\int_{a}^{b} f(x) \, dx \approx \frac{b-a}{6n} \left((y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \ldots + 2y_{2n-2} + 4y_{2n-1} + y_{2n}) \right).$$

http://en.wikipedia.org/wiki/Simpson%27s_rule
week 4.3) (Famous numbers revisited, section 2.6, page 135, of text). The mathy numbers e, $\ln(2)$, π can be well-approximated using approximate solutions to differential equations. We illustrate this on Wednesday Feb. 4 for e, which is $y(1)$ for the solution to the IVP

$$y'(x) = y$$
$$y(0) = 1.$$

Apply Runge-Kutta with $n = 10, 20, 40...$ subintervals, successively doubling the number of subintervals until you obtain the target number below - rounded to 9 decimal digits - twice in succession. We will do this in class for e, and you can modify that code if you wish.

a) $\ln(2)$ is $y(2)$, where $y(x)$ solves the IVP

$$y'(x) = \frac{1}{x}$$
$$y(1) = 0$$

(since $y(x) = \ln(x)$).

b) π is $y(1)$, where $y(x)$ solves the IVP

$$y'(x) = \frac{4}{x^2 + 1}$$
$$y(0) = 0$$

(since $y(x) = 4 \arctan(x)$).

Note that in a,b you are actually "just" using Simpson's rule from Calculus, since the right sides of these DE's only depend on the variable x and not on the value of the function $y(x)$. For reference:

```
> Digits := 16 : #how many digits to use in floating point numbers and calculations
evalf(e);  #evaluate the floating point of e
evalf(\pi);

2.718281828459045
3.141592653589793
```

(1)