MATH 2270-2

Additional homework to be handed in Friday October 26:

section 5.4 page 223, #22, 23; (matrix least squares)

and the following "fundamental subspaces" problem:

\[\text{Problem I: Let } L(x) = Ax, \text{ for the matrix } A \text{ defined by} \]

\[A := \begin{bmatrix}
1 & 0 & -1 & 2 & 3 \\
3 & 2 & -2 & 1 & -1 \\
1 & 2 & 0 & -3 & -7 \\
0 & -2 & -1 & 5 & 10
\end{bmatrix} \]

1a) Find bases for the four fundamental subspaces associated to this map (and matrix). In the domain space you will be looking for the kernel of \(A \) and the row space of \(A \). In the codomain you want the image of \(A \) (column space), and the kernel of the transpose of \(A \). You should be able to deduce all of your answers from

\[\text{rref}(A); \]

\[\text{rref}(\text{ transpose}(A)); \]

1b) Verify that the two domain spaces are perpendicular to each other, and that the two codomain spaces also are, by checking orthogonality between the bases you found in part (a).