The Pythagorean Theorem says that for a right \(\triangle \), with legs \(a \) & \(b \) & hypotenuse \(c \),
\[c^2 = a^2 + b^2 \]

Use the following diagram (by computing the area of the \((a+b)^2\) square two ways) to prove the Pythagorean Thm. Hint: first show that the inside \(c^2 \) is a square, using the fact that the sum of angles in a triangle is 180°.

Consider the point \(P = (1, 2, 3) \).

(a) Draw the \(x-y-z \) axes as on page 2 of today's (12/15) notes, and then draw the coordinate box fn \(P \), as we did on page 2. (So \(P \) is the origin are opposite vertices.)

(b) Use inequalities to specify the region inside the box.

(c) Use inequality and the equality \(z = 1 \) to specify the "front" face of the box.

(d) Use equalities and inequalities to specify (separately) the three edges which contain the point \((1, -2, 5) = P \).

(e) How far is it from \(P \) to the origin?

(f) """""""" to the \(xy \)-plane?

(g) """""""" to the \(x \)-axis?

Sketch pieces of the following surfaces or regions which satisfy the given equities or inequalities:

- \[x^2 + y^2 + z^2 = 9 \]
- \[x^2 + y^2 + z^2 = 9 \]
- \[x^2 + y^2 = 4 \]
- \[x^2 + y^2 \leq 4 \]

11.1: \[13, 14, 17, 22, 25, 28, 31 \] ← in 31 also sketch this helix (which lies on the cylinder \(x^2 + y^2 = 4 \))

11.2: \[2, 3, 4, 7, 15, 17, 27 \]

11.3: \[1, 4, 6, 8, 9, 11, 12, 17, 20, 25, 27 \] ← in 25 & 27 draw pictures in the three vectors & projections

37, 43, 54 (this is called the parallelogram identity. why?) 61, 64, 65, 69, 73, 76