Max-min problems by 13.9

Remember in Calc.

If f is continuous on a closed interval $[a,b]$.

Then f attains its extreme values, (max & min), either

(i) at the endpoints (the "boundary" of the interval)

or

(ii) at critical points x_0 in (a,b) (in the "interior" of the interval)

\[
\Rightarrow \text{ either } f'(x_0) = 0 \text{ or } f'(x) \text{ DNE.} \quad \text{[Because, if } f'(x_0) \text{ exists and } \not= 0, \text{ then } f \text{ is inc or dec at } x_0, \text{ so can't have even a local extremum.]}\]

The analogous fact is true in n-dimensional domain

$\mathbf{f} : D \rightarrow \mathbb{R}^n$

If D is a closed domain

\Downarrow

D includes its boundary.

and if D is a bounded domain

\Rightarrow all points in D are at most a fixed finite distance from ∂D.

and if f is continuous on D

Then f attains its extreme values, either

(i) along the boundary of D

or

(ii) at critical points x_0 in D

\[
\Rightarrow \text{ either each } \frac{\partial f}{\partial x_i}(x_0) = 0 \text{ at } x_0
\]

or not all partial derivatives exist at x_0.

The reasoning is just like in Calc : if some $\frac{\partial f}{\partial x_i}(x_0) \not= 0$

then f is increasing or decreasing in the x_i direction, at x_0.
Example

\(\text{Let } D \text{ = rectangle, } -4 \leq x \leq 4 \)
\(-6 \leq y \leq 6 \)

\[F(x, y) = \frac{3}{4} y^2 + \frac{1}{2} y^3 - \frac{1}{32} y^4 - x^2 \]

Find the extreme values of \(F \), by finding
all critical points and analyzing the behavior
of \(F \) along the boundary (perimeter) of the rectangle.

\[n \quad y = 6, \quad F(x, 6) = -4.5 - x^2 \]

\[\begin{array}{c}
\text{domain} \\
F(x, -6) = -22.5 - x^2 \\
\end{array} \]

Critical points:

\[F_x = -2x = 0 \rightarrow \text{so } x = 0 \]
\[F_y = \frac{3}{2} y + \frac{1}{8} y^2 - \frac{1}{8} y^3 = 0 \]
\[= -\frac{1}{8} \left[y^3 - y^2 - 12y \right] \]
\[= -\frac{1}{8} y (y^2 - y - 12) \]
\[= -\frac{1}{8} y (y-4)(y+3) \rightarrow \text{so } y = 0, 4, -3 \]

\[(0, 0), (0, 4), (0, -3) \]

Looking along the boundary:

we can approach this
systematically, and it
helps to use technology
(next page)

\[F(0, 0) = 0 \]
\[F(0, 4) = 6 \frac{3}{4} \]
\[F(0, -3) \approx 3.09 \]
> with(plots):
Warning: the name changecoords has been redefined

> F := (x, y) -> .75*y^2 + 1/24*y^3 - 1/32*y^4 - x^2;
> plot3d(F(x, y), x = -4..4, y = -6..6,
axes = boxed, color = white);

\[f : = y \rightarrow 0.75y^2 + \frac{1}{24}y^3 - \frac{1}{32}y^4 \]

\[0, 4, 6 \]

> f(4); f(-3); f(0); f(6); f(-6):
6.66666667
3.093750000
0.0
-4.50000000
-22.50000000

> F(4, -6); F(-4, -6); # minimum values on the rectangle
F(0, 4); # maximum value on the rectangle
-38.50000000
-38.50000000
6.66666667

>
open-topped box.
Volume to be 4 m^3
What dim's x, y, z minimize surface area (cardboard area)?
Example.

What line minimizes the "squared vertical deviations" for points $[0], [1], [2]$

\[y = mx + b \]

\[F(m, b) = (b - 1)^2 + (m + b - 2)^2 + (2m + b - 1)^2 \]
Homework for Wed 10/20

5 13.4 7 9,13, 22, 32, 38, 41, 43, 45, 50, 55, 56, 57, 59
5 13.5 9 11, 14, 15, 25, 36, 37, 39, 52, 59, 61
5 13.6 17 24, 29, 36, 38

And

(1) page 991 #51 (linear regression in general).
 (a) Show that \(m \) and \(b \) satisfy the matrix eqtn
 \[
 \begin{bmatrix}
 \sum_{i=1}^{n} x_i^2 & \sum_{i=1}^{n} x_i \\
 \sum_{i=1}^{n} x_i & n
 \end{bmatrix}
 \begin{bmatrix}
 \hat{m} \\
 \hat{b}
 \end{bmatrix}
 =
 \begin{bmatrix}
 \sum_{i=1}^{n} x_i y_i \\
 \sum_{i=1}^{n} x_i y_i
 \end{bmatrix}
 \]

 (b) invert the 2x2 matrix above to find \(m \) and \(b \).
 (c) verify that on class example (page 5) values are reproduced by this general formula.

(II) Consider the lines
 \[\bar{r}(t) = t \begin{bmatrix} 0 \\ 0 \end{bmatrix}\]
 \[\bar{e}(s) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}\]

Find the nearest the lines approach each other by minimizing
 \[|\bar{r}(t) - \bar{e}(s)|^2.\]