Graphing Linear Inequalities

Sketch the graph of each linear inequality.

1) \(y \geq -2x + 5 \)

2) \(y > -x + 1 \)

3) \(y < 0 \)

4) \(y > \frac{2}{3}x - 2 \)

5) \(x > 4 \)

6) \(y > x - 3 \)
Critical thinking questions:

13) Name one particular solution to #11

14) Can you write a linear inequality whose solution contains only points with positive x-values and positive y-values? Why or why not?
Graphing Linear Inequalities

Sketch the graph of each linear inequality.

1) \(y \geq -2x + 5 \)

2) \(y > -x + 1 \)

3) \(y < 0 \)

4) \(y > \frac{2}{3}x - 2 \)

5) \(x > 4 \)

6) \(y > x - 3 \)
7) \(8x - y < -4\)

8) \(2x - y \geq 3\)

9) \(10x - 3y \leq -15\)

10) \(9x + 2y < 10\)

11) \(x \leq -5\)

12) \(x - y < 2\)

Critical thinking questions:

13) Name one particular solution to #11

Any point in the shaded region or boundary. Ex: \((0, 0)\)

14) Can you write a linear inequality whose solution contains only points with positive \(x\)-values and positive \(y\)-values? Why or why not?

No. No line can be in only the 1st quadrant.

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com