Practice Problems for Sections 4.2 and 4.3 – MATH 1170, Fall 2007

1. (a) Solve the differential equation \(\frac{dp}{dt} = 4t + \frac{3}{t^2} \), \(p(1) = -1 \).
(b) What happens to the solution around \(t = 0 \)?
(c) Where does \(p(t) = 17 \)?
(d) Sketch the solution \(p(t) \) for the domain \(0 \leq t \leq 3 \).

2. Use substitution to find the integrals of the following functions.
 (a) \(\frac{1}{(1+5t)^2} \)
 (b) \(\frac{2}{x}(\ln(x))^2 \)
 (c) \(6x(1+x^2)^2 \)
 (c) \(x^2e^{x^3} \)

3. Use integration by parts to evaluate the following functions.
 (a) \(\int \ln(x)dx \)
 (b) \(\int x^3e^{x^2}dx \) (Hint: Also use substitution here \(y = x^2 \))

4. (a) Solve the differential equation \(\frac{dM}{dt} = te^{-t} \), \(M(0) = 1 \). It represents the rate of change of a fungal population in a Petri dish, used for medical purposes.
 (b) As \(t \) gets large, what does \(M(t) \) tend to?
 (c) Why would \(M(t) \) behave like this as \(t \) gets large?