Math 1220
Fall 2002
A. M. Keenan

EXAM III
Wednesday, November 27, 2002

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(5 pts) 1. Write the following polar equation in cartesian form $r = 4\cos \theta + 3\sin \theta$. What geometric object does this equation determine?

Solution

If we multiply both sides of the equation by r we obtain the equation $r^2 = 4r\cos \theta + 3r\sin \theta$. This equation written in cartesian form is then $x^2 + y^2 = 4x + 3y$, since $x = r\cos \theta$ and $y = r\sin \theta$. The geometric object that this equation represents is a circle.

(7 pts) 2. Find the slope of the tangent to the graph of $r = 1 + \sin \theta$ at the point of the graph where $\theta = \frac{\pi}{2}$.

Solution

Since $y = r\sin \theta$ this then implies that $y = \sin \theta + \sin^2 \theta$. Hence $\frac{dy}{d\theta} = \cos \theta + 2\sin \theta \cos \theta$. This implies that $\frac{dy}{d\theta}$ at $\theta = \frac{\pi}{2}$ is zero. Hence the slope of the tangent line to the graph is zero.

(6 pts) 3. Solve the differential equation $y'' + 4y' + 4y = 3e^x$.

Solution

The first thing to do is to find the general solution to the homogeneous differential equation $y'' + 4y' + 4y = 0$. The auxiliary equation for this is $r^2 + 4r + 4 = 0$. The solution to this equation is $r = 2$. Hence the general solution is $C_1e^{-2x} + C_2xe^{-2x}$. Now find the particular solution. Since the function on the right hand side is e^x and e^x is not a solution to the homogeneous equation, then the particular solution has the form Ae^x. If you now substitute the particular solution into the equation, you will find that $A = 1/3$. Hence the solution to the differential equation is $C_1e^{-2x} + C_2xe^{-2x} + \frac{1}{3}e^x$.

(8 pts) 4. Find the Taylor polynomial of order 3 based at π for the function $\sin x$.

Solution

The Taylor polynomial of order three is given by the polynomial

$$f(x) + f'(\pi)(x - \pi) + \frac{f''(\pi)}{2}(x - \pi)^2 + \frac{f^3(\pi)}{6}(x - \pi)^3,$$

where $f(x) = \sin x$. Now $f'(x) = \cos x$, $f''(x) = -\sin x$ and $f^3(x) = -\cos x$. Hence the Taylor polynomial of order three is...
(10 pts) 5. Find the area of the region enclosed by the graph \(r = 3 + \cos \theta \)

Solution

The area of the region is given by the integral \(\int_0^\pi (3 + \cos \theta)^2 \, d\theta \). Expanding this out and using the linearity of the integral we deduce that the area is equal to \(\int_0^\pi 9 \, d\theta + \int_0^\pi \cos \theta \, d\theta + \int_0^\pi \cos^2 \theta \, d\theta \). The next step is to replace \(\cos^2 \theta \) by \(\frac{\cos 2\theta + 1}{2} \). Then if you do the integration you should obtain the answer \(\frac{19\pi}{2} \).

(7 pts) 6. Solve the differential equation \(y'' - 2y' + 5y = 0 \).

Solution

The auxiliary equation for this differential equation is \(r^2 - 2r + 5 \). The solutions to this equation are \(1 \pm 2i \). Hence the solution to the equation is \(y = C_1 e^x \cos 2x + C_2 e^x \sin 2x \).