MATH 2270-2. Final Test: Solutions.

Problem 1. (10 points) Find inverse of the matrix:

\[A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \]

Use any method you like.

Solution.

\[A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -1 \\ 2 & -2 & 1 \\ -1 & 1 & 1 \end{bmatrix}. \]

Problem 2. (15 points) Let \(V \) be the linear space of continuous functions of one variable \(f : \mathbb{R} \to \mathbb{R} \) (with the usual operations of sum and multiplication by scalars). Let \(Z \) be the subset in \(V \) which consists of all continuous functions \(f \) which have integer values at zero (i.e., we allow \(f(0) \) to be \(0, \pm 1, \pm 2, \ldots \), but for instance \(f(0) = 0.5 \) is not allowed). Determine whether or not the subset \(Z \) is a subspace in \(V \). Justify your answer!

Solution. \(Z \) is not a subspace. For instance, take function \(f(x) = 1 \), \(\alpha = 0.5 \). Then \(\alpha f(0) = 0.5 \) is not an integer, i.e. \(\alpha f(x) \) does not belong to \(Z \).

Problem 3. (15 points) 3. [15 points] Using standard basis in \(P_2 \) find matrix representation, rank, nullity and basis of the image of the linear transformation \(T : P_2 \to P_2 \) which is given by the formula:

\[T(p(x)) = xp'(x) + x^2p(1). \]

Here \(p' \) denotes the derivative.

Solution. \(T(1) = 0 + x^2 \), has coordinates \((0, 0, 1) \). Next, \(T(x) = x + x^2 \), has coordinates \((0, 1, 1) \). Lastly, \(T(x^2) = 2x^2 + x^2 = 3x^2 \) has coordinates \((0, 0, 3) \). Hence the matrix of \(T \) is

\[A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix}. \]

This matrix has rank 2 and nullity 1. The basis of the image consists of the vectors \((0, 0, 1) \) and \((0, 1, 1) \). Converting these vectors into polynomials we get: basis of the image of \(T \) is \(\{x^2, x + x^2\} \). \(\square \)

Problem 4. (10 points) Write the augmented matrix and find all solutions of the linear system:

\[\begin{align*} x_1 + x_2 + x_3 - 2x_4 &= 3 \\
2x_1 + x_2 + 3x_3 + 2x_4 &= 5 \\
3x_1 + 2x_2 + 4x_3 &= 8 \end{align*} \]
Solution. \(x_1 = 2 - 2t - 4s, x_2 = 1 + t + 6s, x_3 = t, x_4 = s\) are the parameters.

Problem 5. (15 points) Find an orthonormal basis in the subspace \(V\) in \(\mathbb{R}^4\) spanned by the vectors

\[
\begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ -4 \\ 6 \end{pmatrix}.
\]

Solution. \(\vec{u}_1 = \frac{1}{2}(1, 1, -1, 1), \vec{u}_2 = \frac{1}{2}(-1, 1, 1, 1)\).

Problem 6. (15 points) Find all eigenvalues of the matrix:

\[
\begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix}
\]

For each eigenvalue find a basis of the corresponding eigenspace. Determine if the matrix is diagonalizable.

Solution. The first eigenvalue is 3, the basis of \(E_3\) is \((0, 0, 1)\). The second eigenvalue is 2, the basis of \(E_2\) is \((0, -1, 1)\). Matrix is not diagonalizable since the sum of dimensions of eigenspaces is 2 and not 3.

Problem 7. (10 points) Compute the following determinant using the definition of the determinant (i.e. identify the patterns with the nonzero product of the entries, compute the \(\pm\) signs, etc.):

\[
\begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}.
\]

Solution. There is only one pattern with nonzero product, it is the product of the entries equal to 1. The pattern contains 2 inversions, hence the determinant equals \((-1)^2 = 1\).

Problem 8. (10 points) Consider the vector space \(V = \text{Span}\{\sin^2(t), \cos^2(t), t\}\) with the basis: \(T = \{\sin^2(t), 1, t - 1\}\). Compute the coordinates of the function \(2(\sin^2(t) + \cos^2(t)) - t\) with respect to the basis \(T\).

Solution. \(2(\sin^2(t) + \cos^2(t)) - t = 0 \cdot \sin^2(t) + 1 \cdot 1 + (-1) \cdot (t - 1).\) Hence the coordinates are \((0, 1, -1)\).