MATHEMATICS 3210. Homework #7: Solution.

1. (a) Let \(x_n = \cos(\frac{2n\pi}{n}) \). (b) Find a convergent subsequence and compute \(\limsup x_n \).

Solution. (a) Recall that \(\cos(x + 2n\pi) = \cos(x) \). Thus
\[
x_{6n} = \cos\left(\frac{6n\pi}{3}\right) = \cos(2n\pi) = 1.
\]
This subsequence is constant and converges to 1.
(b) If \(n = 6k + r \) where \(0 \leq r < 6 \) then
\[
x_{6k+r} = \cos(2k\pi + \frac{r\pi}{3}) = \cos\left(\frac{r\pi}{3}\right).
\]
The latter takes values 1 if \(r = 0 \); 1/2, if \(r = 1 \); -1/2, if \(r = 2 \); 0 if \(r = 3 \); -1/2, if \(r = 4 \); 1/2 if \(r = 5 \). The largest of these numbers equals 1. For each \(N \in \mathbb{N} \) there is a natural number \(k \) such that \(6k \geq N \).
Hence
\[
\sup\{x_n | n \geq N\} = 1.
\]
Thus
\[
\limsup x_n = \lim_{N \to \infty} \sup\{x_n | n \geq N\} = 1.
\]

2. Determine whether or not the sequence
\[
x_n = \frac{n + n(-1)^n}{n + 1}
\]
contains a convergent subsequence.

Solution. Let’s show that this sequence is bounded:
\[
|x_n| = \frac{|n + n(-1)^n|}{n + 1} \leq \frac{n + n|(-1)^n|}{n + 1} = \frac{n + n}{n + 1} = \frac{2n}{n + 1}.
\]
We would like to show that the sequence \(\frac{2n}{n+1} \) is bounded. One way to prove it is to note that this sequence converges:
\[
\lim \frac{2n}{n + 1} = \lim \frac{2}{1 + 1/n} = 2.
\]
(By the “fraction” limit theorem.) Since each convergent sequence is bounded we see that there exists \(C > 0 \) such that
\[
\frac{2n}{n + 1} \leq C
\]
Thus \(|x_n| \leq \frac{2n}{n+1} \leq C \). So the sequence \((x_n) \) is bounded. By the Bolzano-Weierstrass theorem, \((x_n) \) has a convergent subsequence. \(\square \)

14.5 (a). Suppose that \(\sum a_n, \sum b_n \) converge. Prove that \(\sum(a_n + b_n) \) converge and
\[
\sum(a_n + b_n) = \sum a_n + \sum b_n.
\]
Solution. Follows immediately from the “sum” theorem for the limnits of sequences.

14.7. Show that if \(\sum a_n \) converges and \(a_n \geq 0 \) for all \(n \) then for each \(p > 1 \) the series \(\sum a_n^p \) also converges.

Solution. Since \(a_n \) converges, \(\lim a_n = 0 \). Hence there exists \(N \in \mathbb{N} \) such that \(a_n < 1 \) for each \(n \geq N \). For each \(0 \leq x < 1 \) we have \(x^p \leq x \). Hence for \(n \geq N \) we have:

\[
0 \leq a_n^p \leq a_n.
\]

Thus \(\sum a_n \) converges by the comparison test. \(\square \)

14.1. (a) Determine if the following sequences converges:
\(\sum \frac{n^4}{2^n} \).

Solution. Let’s apply the ratio test to this sequence:

\[
\frac{a_{n+1}}{a_n} = \frac{(n+1)^4 2^n}{2^{n+1} n^4} = \frac{1}{2} \left(\frac{n+1}{n} \right)^4.
\]

By the “sum” limit theorem

\[
\lim \frac{n+1}{n} = \lim (1 + 1/n) = 1.
\]

By the product limit theorem,

\[
\lim \frac{1}{2} \left(\frac{n+1}{n} \right)^4 = \frac{1}{2} 1^4 = \frac{1}{2} < 1.
\]

Since this limit is \(< 1 \), by the ratio test, the series converges.

Problem. Determine if the series converges:

\[
\sum 2 + \cos(n) 4^n.
\]

Solution. Let’s apply the fraction test to this sequence:

\[
\frac{a_{n+1}}{a_n} = \frac{4^n (2 + \cos(n+1))}{4^{n+1} (2 + \cos(n))} = \frac{12 + \cos(n+1)}{4} \frac{2 + \cos(n)}{2 + \cos(n)}
\]

We would like to show that

\[
\limsup \frac{12 + \cos(n+1)}{4} \frac{2 + \cos(n)}{2 + \cos(n)} \leq \frac{3}{4} < 1.
\]

Indeed,

\[
\frac{1}{4} \left| \frac{2 + \cos(n+1)}{2 + \cos(n)} \right| = \frac{3}{4}.
\]

Thus \(\limsup \frac{12 + \cos(n+1)}{4} \frac{2 + \cos(n)}{2 + \cos(n)} \leq \frac{3}{4} \). Hence by the ratio test, the series converges. \(\square \)