binomial theorem

probability of the complement

probability of the union of two events

the multiplication rule

Bayes' formula
\[n \text{ choose } k \text{ is a brief way of saying how many ways can you choose } k \text{ objects from a set of } n \text{ objects, when the order of selection is not relevant.} \]
\[
\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}
\]

Obviously, this implies \(0 \leq k \leq n \).

Suppose you want to divide \(n \) distinct items into \(r \) distinct groups each with size \(n_1, n_2, \ldots, n_r \), how do you count the possible outcomes?

If \(n_1 + n_2 + \ldots + n_r = n \), then the number of possible divisions can be counted by the following formula:

\[
\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! \cdot n_2! \ldots n_r!}
\]

If \(E^c \) denotes the complement of event \(E \), then
\[
P(E^c) = 1 - P(E)
\]

If \(P(F) > 0 \), then
\[
P(E \mid F) = \frac{P(EF)}{P(F)}
\]

These flashcards and the accompanying \LaTeX{} source code are licensed under a Creative Commons Attribution–NonCommercial–ShareAlike 2.5 License. For more information, see creativecommons.org. You can contact the author at:

jasonu [remove-this] at physics dot utah dot edu

\[
(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}
\]

1. \(0 \leq P(E) \leq 1 \)
2. \(P(S) = 1 \)
3. For any sequence of mutually exclusive events \(E_1, E_2, \ldots \) (i.e. events where \(E_i E_j = \emptyset \) when \(i \neq j \))

\[
P \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} P(E_i)
\]

If \(P(F) > 0 \), then
\[
P(E \mid F) = \frac{P(EF)}{P(F)}
\]

\[
P(A \cup B) = P(A) + P(B) - P(AB)
\]

\[
P(E) = P(EF) + P(EF^c)
\]

\[
= P(E \mid F)P(F) + P(E \mid F^c)P(F^c)
\]

\[
= P(E \mid F)P(F) + P(E \mid F^c)[1 - P(F)]
\]

\[
P(E_1 E_2 E_3 \ldots E_n) = P(E_1)P(E_2 \mid E_1)P(E_3 \mid E_2 E_1) \ldots P(E_n \mid E_1 \ldots E_{n-1})
\]

\[
P(E) = P(EF) + P(EF^c)
\]

\[
= P(E \mid F)P(F) + P(E \mid F^c)P(F^c)
\]

\[
= P(E \mid F)P(F) + P(E \mid F^c)[1 - P(F)]
\]

\[
P(E_1 E_2 E_3 \ldots E_n) = P(E_1)P(E_2 \mid E_1)P(E_3 \mid E_2 E_1) \ldots P(E_n \mid E_1 \ldots E_{n-1})
\]
Definition

independent events

Probability

Definition

probability mass function of a discrete random variable

Theorem

Definition

cumulative distribution function F

Probability

Theorem

properties of the cumulative distribution function

Definition

expected value (discrete case)

Proposition

expected value of a function of X (discrete case)

Corollary

Definition/Theorem

linearity of expectation

Definition

variance

Definition

probability mass function of a Bernoulli random variable

Probability

probability mass function of a binomial random variable
For a discrete random variable X, we define the probability mass function $p(a)$ of X by

$$p(a) = P\{X = a\}$$

Probability mass functions are often written as a table.

Two events E and F are said to be independent iff

$$P(EF) = P(E)P(F)$$

Otherwise they are said to be dependent.

The cumulative distribution function satisfies the following properties:

1. F is a nondecreasing function
2. $\lim_{a \to \infty} F(a) = 1$
3. $\lim_{a \to -\infty} F(a) = 0$

The cumulative distribution function (F) is defined to be

$$F(a) = \sum_{all \ x \leq a} p(x)$$

The cumulative distribution function $F(a)$ denotes the probability that the random variable X has a value less than or equal to a.

If X is a discrete random variable that takes on the values denoted by x_i ($i = 1 \ldots n$) with respective probabilities $p(x_i)$, then for any real–valued function f

$$E[f(X)] = \sum_{i=1}^{n} f(x_i)p(x)$$

If X is a random variable with mean μ, then we define the variance of X to be

$$\text{var}(X) = E[(X - \mu)^2] = E[X^2] - (E[X])^2 = E[X^2] - \mu^2$$

If α and β are constants, then

$$E[\alpha X + \beta] = \alpha E[X] + \beta$$

The first line is the actual definition, but the second and third equations are often more useful and can be shown to be equivalent by some algebraic manipulation.

Suppose n independent Bernoulli trials are performed. If the probability of success is p and the probability of failure is $1 - p$, then X is said to be a binomial random variable with parameters (n, p).

The probability mass function is given by:

$$p(i) = \binom{n}{i} p^i (1 - p)^{n-i}$$

where $i = 0, 1, \ldots, n$

If an experiment can be classified as either success or failure, and if we denote success by $X = 1$ and failure by $X = 0$ then, X is a Bernoulli random variable with probability mass function:

$$p(0) = P\{X = 0\} = 1 - p$$

$$p(1) = P\{X = 1\} = p$$

where p is the probability of success and $0 \leq p \leq 1$.
A random variable \(X \) that takes on one of the values \(0, 1, \ldots \), is said to be a Poisson random variable with parameter \(\lambda \) if for some \(\lambda > 0 \)

\[
p(i) = P\{X = i\} = \frac{\lambda^i e^{-\lambda}}{i!}
\]

where \(i = 0, 1, 2, \ldots \)

Suppose independent Bernoulli trials, are repeated until success occurs. If we let \(X \) equal the number of trials required to achieve success, then \(X \) is a geometric random variable with probability mass function:

\[
p(n) = P\{X = n\} = (1 - p)^{n-1}p
\]

where \(n = 1, 2, \ldots \)

Suppose that independent Bernoulli trials (with probability of success \(p \)) are performed until \(r \) successes occur. If we let \(X \) equal the number of trials required, then \(X \) is a negative binomial random variable with probability mass function:

\[
p(n) = P\{X = n\} = \binom{n - 1}{r - 1} p^r (1 - p)^{n-r}
\]

where \(n = r, r + 1, \ldots \)

We define \(X \) to be a continuous random variable if there exists a function \(f \), such that for any set \(B \) of real numbers

\[
P\{X \in B\} = \int_B f(x) \, dx
\]

The function \(f \) is called the probability density function of the random variable \(X \).

If \(X \) is a binomial random variable with parameters \(n \) and \(p \), then

\[
E[X] = np
\]

\[
\text{var}(X) = np(1 - p)
\]

If \(X \) is a Poisson random variable with parameter \(\lambda \), then

\[
E[X] = \lambda
\]

\[
\text{var}(X) = \lambda
\]

If \(X \) is a negative binomial random variable with parameters \((p, r) \), then

\[
E[X] = \frac{r}{p}
\]

\[
\text{var}(X) = \frac{r(1 - p)}{p^2}
\]

If \(X \) is a geometric random variable with parameter \(p \), then

\[
E[X] = \frac{1}{p}
\]

\[
\text{var}(X) = \frac{1 - p}{p^2}
\]

If \(X \) is a uniform random variable on the interval \((\alpha, \beta) \), then its probability density function is given by

\[
f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha < x < \beta \\ 0 & \text{otherwise} \end{cases}
\]

If \(X \) is a uniform random variable with parameters \((\alpha, \beta)\), then

\[
E[X] = \frac{\alpha + \beta}{2}
\]

\[
\text{var}(X) = \frac{(\beta - \alpha)^2}{12}
\]