Math 6320, Assignment 5

Due: End of April

- Let A be a finitely generated abelian group, viewed as an ℤ-module. Describe A_p for each prime ideal p in ℤ. Use the structure theorem for abelian groups.
- 2. Let *R* be a ring. Verify that for any *r* in *R*, the ring R[x]/(xr-1) is (canonically isomorphic) to the localization of *R* at the multiplicatively closed subset $\{r^i \mid i \ge 0\}$.
- 3. Let *I* be an ideal in *R* and *M* an *R*-module such that $M_{\mathfrak{m}} = 0$ for each maximal ideal $\mathfrak{m} \supseteq I$. Prove that IM = M.
- 4. Let *R* be a ring and *M* a faithful *R*-module; this means that $\operatorname{ann}_R M = (0)$. Prove that when *M* is noetherian, as an *R*-module, the ring *R* is noetherian.
- 5. Let *R* be a Noetherian ring and $\varphi: R \to R$ a surjective homomorphism of rings. Is φ an isomorphism?
- 6. Let *K* be a field.
 - (a) Suppose f(x) in K[x] has positive degree. Prove that K[x] is a finitely generated K[f(x)]-module.
 - (b) Let *R* be a subring of K[x] that contains *K*. Prove that *R* is Noetherian.
 - (c) Describe a non-noetherian subring of K[x, y].
- 7. Suppose K is not algebraically closed. Prove that each algebraic set in K^n is the zero set of a single polynomial.
- 8. Prove that the subset $V = \{(t, t^2, ..., t^n) \mid t \in \mathbb{C}\}$ of \mathbb{C}^n is algebraic.
- 9. Let *K* be an algebraically closed field and *L* an extension field. If polynomials f_1, \ldots, f_c in $K[x_1, \ldots, x_n]$ have a common root in L^n , prove they have a common root in K^n .
- 10. Let m be a maximal ideal of $\mathbb{R}[x,y]$ containing $x^2 + y^2 + 1$. What is the quotient $\mathbb{R}[x,y]/\mathfrak{m}$?