1. Let $A$ be a finitely generated abelian group, viewed as an $\mathbb{Z}$-module. Describe $A_{\mathfrak{p}}$ for each prime ideal $\mathfrak{p}$ in $\mathbb{Z}$. Use the structure theorem for abelian groups.
2. Let $R$ be a ring. Verify that for any $r$ in $R$, the ring $R[x] /(x r-1)$ is (canonically isomorphic) to the localization of $R$ at the multiplicatively closed subset $\left\{r^{i} \mid i \geq 0\right\}$.
3. Let $I$ be an ideal in $R$ and $M$ an $R$-module such that $M_{\mathfrak{m}}=0$ for each maximal ideal $\mathfrak{m} \supseteq I$. Prove that $I M=M$.
4. Let $R$ be a ring and $M$ a faithful $R$-module; this means that $\operatorname{ann}_{R} M=(0)$. Prove that when $M$ is noetherian, as an $R$-module, the ring $R$ is noetherian.
5. Let $R$ be a Noetherian ring and $\varphi: R \rightarrow R$ a surjective homomorphism of rings. Is $\varphi$ an isomorphism?
6. Let $K$ be a field.
(a) Suppose $f(x)$ in $K[x]$ has positive degree. Prove that $K[x]$ is a finitely generated $K[f(x)]$-module.
(b) Let $R$ be a subring of $K[x]$ that contains $K$. Prove that $R$ is Noetherian.
(c) Describe a non-noetherian subring of $K[x, y]$.
7. Suppose $K$ is not algebraically closed. Prove that each algebraic set in $K^{n}$ is the zero set of a single polynomial.
8. Prove that the subset $V=\left\{\left(t, t^{2}, \ldots, t^{n}\right) \mid t \in \mathbb{C}\right\}$ of $\mathbb{C}^{n}$ is algebraic.
9. Let $K$ be an algebraically closed field and $L$ an extension field. If polynomials $f_{1}, \ldots, f_{c}$ in $K\left[x_{1}, \ldots, x_{n}\right]$ have a common root in $L^{n}$, prove they have a common root in $K^{n}$.
10. Let $\mathfrak{m}$ be a maximal ideal of $\mathbb{R}[x, y]$ containing $x^{2}+y^{2}+1$. What is the quotient $\mathbb{R}[x, y] / \mathfrak{m}$ ?
