Math 6320, Assignment 4

1. Determine the minimal polynomial of $\cos 2 \pi / 7$ over \mathbb{Q}.
2. If n is an odd positive integer, prove that $\mathbb{Q}(\cos (2 \pi / n))=\mathbb{Q}(\cos (\pi / n))$.
3. Take a regular n-sided polygon inscribed in a circle of radius 1 . Label the vertices P_{1}, \ldots, P_{n}, and let λ_{k} be the length of the line joining P_{k} and P_{n} for $1 \leq k \leq n-1$. Prove that

$$
\lambda_{1} \cdots \lambda_{n-1}=n
$$

4. Find a real number α such that the extension $\mathbb{Q} \subset \mathbb{Q}(\alpha)$ is Galois, with Galois group $\mathbb{Z} / 6$.
5. Let α be the positive real number $5^{1 / 4}$. Prove that each of the extensions $\mathbb{Q} \subset \mathbb{Q}\left(i \alpha^{2}\right)$ and $\mathbb{Q}\left(i \alpha^{2}\right) \subset \mathbb{Q}(\alpha+i \alpha)$ is normal. Is $\mathbb{Q} \subset \mathbb{Q}(\alpha+i \alpha)$ normal?
6. Let $E=\mathbb{Q}\left(e^{2 \pi i / 8}\right)$. Determine all subgroups of $\operatorname{Gal}(E / \mathbb{Q})$, and the corresponding intermediate fields.
7. Let $\underline{s}:=s_{1}, s_{2}, s_{3}$ be the elementary symmetric polynomials in $\underline{x}:=x_{1}, x_{2}, x_{3}$. Prove that $\mathbb{Q}(\underline{x})$ is not a radical extension of $\mathbb{Q}(\underline{s})$, and that it is a radical extension of $\mathbb{Q}(i, \underline{s})$.
8. Prove that $x^{7}-10 x^{5}+15 x+5$ is solvable by radicals over \mathbb{Q}.
9. Let $f(x)$ be an irreducible polynomial in $\mathbb{Q}[x]$ of prime degree $p \geq 5$, and E the splitting field of $f(x)$. Prove that $f(x)$ is solvable by radicals if and only if $E=\mathbb{Q}(\alpha, \beta)$ for any pair of distinct roots α, β of $f(x)$.
10. Deduce from the preceding exercise that if $f(x)$ as above has exactly two real roots, then it is not solvable by radicals. (This was proved by Galois).
