Math 6320, Assignment 4

Due: March 23rd

- 1. Determine the minimal polynomial of $\cos 2\pi/7$ over \mathbb{Q} .
- 2. If *n* is an odd positive integer, prove that $\mathbb{Q}(\cos(2\pi/n)) = \mathbb{Q}(\cos(\pi/n))$.
- 3. Take a regular *n*-sided polygon inscribed in a circle of radius 1. Label the vertices P_1, \ldots, P_n , and let λ_k be the length of the line joining P_k and P_n for $1 \le k \le n-1$. Prove that

$$\lambda_1 \cdots \lambda_{n-1} = n$$
.

- 4. Find a real number α such that the extension $\mathbb{Q} \subset \mathbb{Q}(\alpha)$ is Galois, with Galois group $\mathbb{Z}/6$.
- 5. Let α be the positive real number $5^{1/4}$. Prove that each of the extensions $\mathbb{Q} \subset \mathbb{Q}(i\alpha^2)$ and $\mathbb{Q}(i\alpha^2) \subset \mathbb{Q}(\alpha + i\alpha)$ is normal. Is $\mathbb{Q} \subset \mathbb{Q}(\alpha + i\alpha)$ normal?
- 6. Let $E = \mathbb{Q}(e^{2\pi i/8})$. Determine all subgroups of $\operatorname{Gal}(E/\mathbb{Q})$, and the corresponding intermediate fields.
- 7. Let $\underline{s} := s_1, s_2, s_3$ be the elementary symmetric polynomials in $\underline{x} := x_1, x_2, x_3$. Prove that $\mathbb{Q}(\underline{x})$ is not a radical extension of $\mathbb{Q}(\underline{s})$, and that it is a radical extension of $\mathbb{Q}(i, \underline{s})$.
- 8. Prove that $x^7 10x^5 + 15x + 5$ is solvable by radicals over \mathbb{Q} .
- 9. Let f(x) be an irreducible polynomial in $\mathbb{Q}[x]$ of prime degree $p \ge 5$, and *E* the splitting field of f(x). Prove that f(x) is solvable by radicals if and only if $E = \mathbb{Q}(\alpha, \beta)$ for any pair of distinct roots α, β of f(x).
- 10. Deduce from the preceding exercise that if f(x) as above has exactly two real roots, then it is not solvable by radicals. (This was proved by Galois).