1. For each of the following polynomials, determine the number of distinct roots in \mathbb{F}_{49}.

$$
x^{48}-1, \quad x^{49}-1, \quad x^{54}-1
$$

2. Let k be a field of characteristic $p>0$. Set $E=k(x, y)$ and $F=k\left(x^{p}, y^{p}\right)$.
(a) Prove that $[E: F]=p^{2}$.
(b) Prove that $E \neq F(\alpha)$ for any $\alpha \in E$.
3. Prove that the extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is normal (also called Galois), and compute its Galois group.
4. Determine the Galois group of $x^{4}-2 \in \mathbb{Q}[x]$.
5. Determine the Galois group of $x^{4}+4 x^{2}+2 \in \mathbb{Q}[x]$.
6. Compute the cyclotomic polynomials $\Phi_{30}(x)$ and $\Phi_{81}(x)$. Use the formula given by Möbius inversion.
7. This exercise and the next give a quick method for computing cyclotomic polynomials.
(a) Prove that $\Phi_{n}(x)=x^{\varphi(n)} \Phi_{n}(1 / x)$, so that the coefficients of $\Phi_{n}(x)$ are palindromic.
(b) Prove that $\Phi_{n}(x)$ is determined by its value in the residue ring $\mathbb{Z}[x]$ modulo $\left(x^{\lceil\varphi(n) / 2\rceil+1}\right)$.
8. Prove the following identities.
(a) $\Phi_{n}(x)=\Phi_{m}\left(x^{n / m}\right)$ when m is the product of the distinct prime factors dividing n.
(b) $\Phi_{p n}(x)=\Phi_{n}\left(x^{p}\right) / \Phi_{n}(x)$ when p is a prime not dividing n.
(c) $\Phi_{2 n}(x)=\Phi_{n}(-x)$ when n is an odd integer ≥ 3.
9. Use the preceding exercises to compute $\Phi_{n}(x)$ for $n=30,81,105$; compare with your answer for (6).
