Math 6320, Assignment 3

Due: Weekend of March 4th

1. For each of the following polynomials, determine the number of distinct roots in \mathbb{F}_{49} .

$$x^{48} - 1, \qquad x^{49} - 1, \qquad x^{54} - 1.$$

- 2. Let *k* be a field of characteristic p > 0. Set E = k(x, y) and $F = k(x^p, y^p)$.
 - (a) Prove that $[E:F] = p^2$.
 - (b) Prove that $E \neq F(\alpha)$ for any $\alpha \in E$.
- 3. Prove that the extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2},\sqrt{3})$ is normal (also called Galois), and compute its Galois group.
- 4. Determine the Galois group of $x^4 2 \in \mathbb{Q}[x]$.
- 5. Determine the Galois group of $x^4 + 4x^2 + 2 \in \mathbb{Q}[x]$.
- 6. Compute the cyclotomic polynomials $\Phi_{30}(x)$ and $\Phi_{81}(x)$. Use the formula given by Möbius inversion.
- 7. This exercise and the next give a quick method for computing cyclotomic polynomials.
 - (a) Prove that $\Phi_n(x) = x^{\varphi(n)} \Phi_n(1/x)$, so that the coefficients of $\Phi_n(x)$ are palindromic.
 - (b) Prove that $\Phi_n(x)$ is determined by its value in the residue ring $\mathbb{Z}[x]$ modulo $(x^{\lceil \varphi(n)/2 \rceil+1})$.
- 8. Prove the following identities.
 - (a) $\Phi_n(x) = \Phi_m(x^{n/m})$ when *m* is the product of the distinct prime factors dividing *n*.
 - (b) $\Phi_{pn}(x) = \Phi_n(x^p)/\Phi_n(x)$ when p is a prime not dividing n.
 - (c) $\Phi_{2n}(x) = \Phi_n(-x)$ when *n* is an odd integer ≥ 3 .
- 9. Use the preceding exercises to compute $\Phi_n(x)$ for n = 30, 81, 105; compare with your answer for (6).