Math 6320, Assignment 1

Due: Weekend of January 26

- 1. Express the symmetric polynomial $x^2y^2 + y^2z^2 + z^2x^2$ in terms of elementary symmetric polynomials in x, y, z.
- 2. Set $\mathbb{Z}[\underline{x}] := \mathbb{Z}[x_1, \dots, x_n]$ and for each integer $d \ge 1$ consider the symmetric polynomial

$$p_d(\underline{x}) := \sum_{i=1}^n x_i^d \, .$$

Let $\mathbb{Z}[|\underline{x}|] := \mathbb{Z}[|x_1, \dots, x_n|]$ be the ring of formal power series in \underline{x} , and consider the map $\delta : \mathbb{Z}[|\underline{x}|] \to \mathbb{Z}[|\underline{x}|]$ defined as follows:

$$\delta(\sum_{i=0}^{\infty}u_i):=\sum_{i=0}^{\infty}iu_i$$

This exercise leads to a recursive relation (due to Newton) for expressing $p_d(\underline{x})$ in terms of $s_k(\underline{x})$, the elementary symmetric polynomials.

- (a) Prove that δ is a \mathbb{Z} -linear map satisfying the Leibniz rule $\delta(uv) = \delta(u)v + u\delta(v)$; said otherwise, δ is a \mathbb{Z} -derivation of $\mathbb{Z}[|\underline{x}|]$.
- (b) Verify the following identity

$$\frac{\delta(\prod_{i=1}^{n}(1+x_i))}{\prod_{i=1}^{n}(1+x_i)} = \frac{x_1}{1+x_1} + \dots + \frac{x_n}{1+x_n}$$

- (c) Prove that $\prod_{i=1}^{n} (1+x_i) = \sum_{i=1}^{n} s_i$.
- (d) Compute $\delta(\prod_{i=1}^{n}(1+x_i))$ using (c) and compare it what one gets (b) to deduce that, for $d \ge 1$, one has

$$p_d(\underline{x}) = (-1)^{d-1} ds_d(\underline{x}) + \sum_{k=1}^{d-1} (-1)^{k-1} s_k(\underline{x}) p_{d-k}(\underline{x})$$

Recall that $s_k(\underline{x}) = 0$ for k > n.

- 3. Using the preceding exercise, compute the sum of the seventh powers of the roots of the equation $y^3 + py + q$, where p,q are integers.
- 4. In the following exercise D(f) denotes the discriminant of a polynomial f(X).
 - (a) If f(X) = (X a)g(X), prove that $D(f) = g(a)^2 D(g)$.
 - (b) Compute $D(X^n 1)$, for $n \ge 1$, and $D(X^{n-1} + X^{n-2} + \dots + 1)$, for $n \ge 2$.
- 5. This exercise derives an expression for the resultant in terms of determinants. Consider the following polynomials in $\mathbb{Z}[\underline{x}, y][X]$, the polynomials in the indeterminate X with coefficients in the ring $\mathbb{Z}[\underline{x}, y]$.

$$f(X) := \prod_{i=1}^{m} (X - x_i) = \sum_{i=0}^{m} a_i X^i$$
 and $g(X) := \prod_{j=1}^{n} (X - y_j) = \sum_{j=0}^{n} b_j X^i$

Consider the $(m+n) \times (m+n)$ matrices; the one on the left is a Vandermonde matrix.

$\begin{bmatrix} y_1^{m+n-1} \end{bmatrix}$	y_1^{m+n-2}		<i>y</i> 1	1]			a_m a_{m-1}	$0 a_m$	· · · · · · ·	$\begin{array}{c} 0\\ 0\end{array}$	b_n b_{n-1}		····	0 0	
$\begin{vmatrix} \vdots \\ y_n^{m+n-1} \\ x_1^{m+n-1} \\ \vdots \end{vmatrix}$	$ \begin{array}{c} \vdots \\ y_n^{m+n-2} \\ x_1^{m+n-2} \\ \vdots \end{array} $: :	:	1	and	A :=	$\begin{array}{c} \vdots \\ a_0 \\ 0 \\ \vdots \end{array}$: :	$egin{array}{c} 0 \\ a_m \\ a_{m-1} \\ dots \end{array}$	$\begin{array}{c} \vdots \\ b_0 \\ 0 \\ \vdots \end{array}$: 0	: :	$\begin{array}{c} 0 \\ b_n \end{array}$	
x_n^{m+n-1}	x_m	•••	x_m	IJ			_ :	÷	÷	a_0	÷	÷	÷	b_0	

- (a) Compute det(VA) in two different ways to deduce that $Res_X(f,g) = det(A)$. For this, you will need (and can use without proof) the standard computation of the determinant of a Vandermonde matrix.
- (b) Deduce that $\operatorname{Res}_X(f,g)$ is in $\mathbb{Z}[a_0,\ldots,a_m,b_0,\ldots,b_n]$; in words, this means that the resultant can be expressed as a polynomial in the coefficients of f(X) and g(X).