1. Express the symmetric polynomial $x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}$ in terms of elementary symmetric polynomials in x, y, z.
2. Set $\mathbb{Z}[\underline{x}]:=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and for each integer $d \geq 1$ consider the symmetric polynomial

$$
p_{d}(\underline{x}):=\sum_{i=1}^{n} x_{i}^{d}
$$

Let $\mathbb{Z}[|\underline{x}|]:=\mathbb{Z}\left[\left|x_{1}, \ldots, x_{n}\right|\right]$ be the ring of formal power series in \underline{x}, and consider the map $\delta: \mathbb{Z}[|\underline{x}|] \rightarrow \mathbb{Z}[|\underline{x}|]$ defined as follows:

$$
\delta\left(\sum_{i=0}^{\infty} u_{i}\right):=\sum_{i=0}^{\infty} i u_{i}
$$

This exercise leads to a recursive relation (due to Newton) for expressing $p_{d}(\underline{x})$ in terms of $s_{k}(\underline{x})$, the elementary symmetric polynomials.
(a) Prove that δ is a \mathbb{Z}-linear map satisfying the Leibniz rule $\delta(u v)=\delta(u) v+u \delta(v)$; said otherwise, δ is a \mathbb{Z}-derivation of $\mathbb{Z}[|\underline{x}|]$.
(b) Verify the following identity

$$
\frac{\delta\left(\prod_{i=1}^{n}\left(1+x_{i}\right)\right)}{\prod_{i=1}^{n}\left(1+x_{i}\right)}=\frac{x_{1}}{1+x_{1}}+\cdots+\frac{x_{n}}{1+x_{n}}
$$

(c) Prove that $\prod_{i=1}^{n}\left(1+x_{i}\right)=\sum_{i=1}^{n} s_{i}$.
(d) Compute $\delta\left(\prod_{i=1}^{n}\left(1+x_{i}\right)\right)$ using (c) and compare it what one gets (b) to deduce that, for $d \geq 1$, one has

$$
p_{d}(\underline{x})=(-1)^{d-1} d s_{d}(\underline{x})+\sum_{k=1}^{d-1}(-1)^{k-1} s_{k}(\underline{x}) p_{d-k}(\underline{x}) .
$$

Recall that $s_{k}(\underline{x})=0$ for $k>n$.
3. Using the preceding exercise, compute the sum of the seventh powers of the roots of the equation $y^{3}+p y+q$, where p, q are integers.
4. In the following exercise $D(f)$ denotes the discriminant of a polynomial $f(X)$.
(a) If $f(X)=(X-a) g(X)$, prove that $D(f)=g(a)^{2} D(g)$.
(b) Compute $D\left(X^{n}-1\right)$, for $n \geq 1$, and $D\left(X^{n-1}+X^{n-2}+\cdots+1\right)$, for $n \geq 2$.
5. This exercise derives an expression for the resultant in terms of determinants. Consider the following polynomials in $\mathbb{Z}[\underline{x}, \underline{y}][X]$, the polynomials in the indeterminate X with coefficients in the ring $\mathbb{Z}[\underline{x}, \underline{y}]$.

$$
f(X):=\prod_{i=1}^{m}\left(X-x_{i}\right)=\sum_{i=0}^{m} a_{i} X^{i} \quad \text { and } \quad g(X):=\prod_{j=1}^{n}\left(X-y_{j}\right)=\sum_{j=0}^{n} b_{j} X^{i}
$$

Consider the $(m+n) \times(m+n)$ matrices; the one on the left is a Vandermonde matrix.
$V:=\left[\begin{array}{ccccc}y_{1}^{m+n-1} & y_{1}^{m+n-2} & \cdots & y_{1} & 1 \\ \vdots & \vdots & \vdots & \vdots & \\ y_{n}^{m+n-1} & y_{n}^{m+n-2} & \cdots & y_{n} & 1 \\ x_{1}^{m+n-1} & x_{1}^{m+n-2} & \cdots & x_{1} & 1 \\ \vdots & \vdots & \vdots & \vdots & \\ x_{n}^{m+n-1} & x_{m}^{m+n-2} & \cdots & x_{m} & 1\end{array}\right] \quad$ and $\quad A:=\left[\begin{array}{cccccccc}a_{m} & 0 & \cdots & 0 & b_{n} & 0 & \cdots & 0 \\ a_{m-1} & a_{m} & \cdots & 0 & b_{n-1} & b_{n} & \cdots & 0 \\ \vdots & \vdots & \vdots & 0 & \vdots & \vdots & \vdots & 0 \\ a_{0} & 0 & \cdots & a_{m} & b_{0} & 0 & \cdots & b_{n} \\ 0 & a_{0} & \cdots & a_{m-1} & 0 & b_{0} & \cdots & b_{n-1} \\ \vdots & \vdots \\ \vdots & \vdots & \vdots & a_{0} & \vdots & \vdots & \vdots & b_{0}\end{array}\right]$
(a) Compute $\operatorname{det}(V A)$ in two different ways to deduce that $\operatorname{Res}_{X}(f, g)=\operatorname{det}(A)$. For this, you will need (and can use without proof) the standard computation of the determinant of a Vandermonde matrix.
(b) Deduce that $\operatorname{Res}_{X}(f, g)$ is in $\mathbb{Z}\left[a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n}\right]$; in words, this means that the resultant can be expressed as a polynomial in the coefficients of $f(X)$ and $g(X)$.

