Math 6310, Assignment 6

Due in class: Monday, November 30

- 1. Determine, up to isomorphism, all finitely generated subgroups of \mathbb{Q} .
- 2. Determine all maximal ideals of the ring $\mathbb{Z}[x]/(120, x^3 + 1)$.
- 3. Let *M* be a \mathbb{Z} -module that is a homomorphic image of \mathbb{Z}^2 , such that each element of *M* is annihilated by 6. Determine all such *M* up to isomorphism.
- 4. Let \mathbb{F} be a field, and $R = \mathbb{F}[x]$ a polynomial ring. Let *M* be the quotient of R^3 by the submodule generated by the elements (x^2, x^3, x^4) and $(1, x + 1, x^2)$ of R^3 . Express *M* as a direct sum of cyclic *R*-modules.
- 5. If *M* is a square matrix over \mathbb{C} with $M^3 = M$, prove that *M* is diagonalizable. Is this true over arbitrary fields?
- 6. Find the Jordan form of the matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

- 7. Find the possible Jordan forms of a real 3×3 matrix *M* satisfying $M^2 + M + I = 0$.
- 8. Let a, b, c be real numbers with $a^2 + b^2 + c^2 = 1$. Determine the possible Jordan forms of the matrix

$$\begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix}.$$

- 9. Determine the number of conjugacy classes of elements of order 2 in $GL_n(\mathbb{F})$. Does this depend on the characteristic of the field \mathbb{F} ?
- 10. If *M* is a 5×5 complex matrix with det(*M*) = 1, trace(*M*) = 5, rank(*M I*) = 3, and minimal polynomial having degree 3, find the possible Jordan forms of *M*.