Math 6310, Assignment 5

Due: 9th November, Monday

- 1. If 1 ab is invertible in a ring, show that 1 ba is also invertible.
- 2. Let *R* be a ring in which $x^3 = x$ for each *x*. Prove that *R* is commutative.

In the problems below, *R* is a commutative ring.

3. In which of the following rings is every ideal principal? Justify your answer.

(a) $\mathbb{Z} \times \mathbb{Z}$, (b) $\mathbb{Z}/4$, (c) $(\mathbb{Z}/6)[x]$, (d) $(\mathbb{Z}/4)[x]$.

- 4. If R is a domain that is not a field, prove that the polynomial ring R[x] is not a principal ideal domain.
- 5. An element r in a ring R is *nilpotent* if $r^n = 0$ for some $n \ge 0$. Prove the following assertions.
 - (a) If r is nilpotent, then 1 + r is invertible in R.
 - (b) If r_1, \ldots, r_c are nilpotent elements, then any element in the ideal (r_1, \ldots, r_c) is nilpotent.
- 6. Let *R* be a commutative ring and R[x] the polynomial ring over *R* in the indeterminate *x*. Let

$$f(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_n x^n$$
 with $r_i \in R$.

Prove the following assertions.

- (a) f(x) is nilpotent if and only if r_0, \ldots, r_n are nilpotent.
- (b) f(x) is a unit in R[x] if and only if r_0 is a unit in R and r_1, \ldots, r_n are nilpotent.
- (c) f(x) is a zerodivisor if and only if there exists a nonzero element $r \in R$ such that $r \cdot f = 0$.

Recall that $a \in R$ is a zerodivisor if there exists $b \neq 0$ in R with ab = 0; the only zerodivisor in a domain is 0.