Math 6310, Assignment 5

1. If $1-a b$ is invertible in a ring, show that $1-b a$ is also invertible.
2. Let R be a ring in which $x^{3}=x$ for each x. Prove that R is commutative.

In the problems below, R is a commutative ring.

3. In which of the following rings is every ideal principal? Justify your answer.
(a) $\mathbb{Z} \times \mathbb{Z}$,
(b) $\mathbb{Z} / 4$,
(c) $(\mathbb{Z} / 6)[x]$,
(d) $(\mathbb{Z} / 4)[x]$.
4. If R is a domain that is not a field, prove that the polynomial ring $R[x]$ is not a principal ideal domain.
5. An element r in a ring R is nilpotent if $r^{n}=0$ for some $n \geqslant 0$. Prove the following assertions.
(a) If r is nilpotent, then $1+r$ is invertible in R.
(b) If r_{1}, \ldots, r_{c} are nilpotent elements, then any element in the ideal $\left(r_{1}, \ldots, r_{c}\right)$ is nilpotent.
6. Let R be a commutative ring and $R[x]$ the polynomial ring over R in the indeterminate x. Let

$$
f(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n} x^{n} \quad \text { with } r_{i} \in R .
$$

Prove the following assertions.
(a) $f(x)$ is nilpotent if and only if r_{0}, \ldots, r_{n} are nilpotent.
(b) $f(x)$ is a unit in $R[x]$ if and only if r_{0} is a unit in R and r_{1}, \ldots, r_{n} are nilpotent.
(c) $f(x)$ is a zerodivisor if and only if there exists a nonzero element $r \in R$ such that $r \cdot f=0$.

Recall that $a \in R$ is a zerodivisor if there exists $b \neq 0$ in R with $a b=0$; the only zerodivisor in a domain is 0 .

