Math 6310, Assignment 4

Due in class: Monday, October 26

1. Let x, y be group elements such that x and y commute with $[x, y] = xyx^{-1}y^{-1}$. Prove that for each $n \ge 1$, one has

$$[x^n, y] = [x, y]^n$$
 and $x^n y^n = (xy)^n [x, y]^{\binom{n}{2}}$.

- 2. Let \mathbb{F} be a field with more than three elements. Prove that the commutator subgroup of $SL_2(\mathbb{F})$ contains all matrices of the form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, for $a \in \mathbb{F}$.
- 3. For p,q distinct primes, prove that a group of order p^2q is solvable.
- 4. Let *p* be a prime integer. What is the number of Sylow *p*-subgroups of $GL_2(\mathbb{F}_p)$?
- 5. For subgroups H, K of G we use [H, K] for the subgroup generated by $hkh^{-1}k^{-1}$ with $h \in H$ and $k \in K$. Prove:
 - (a) $[H,K] \lhd \langle H,K \rangle$, where $\langle H,K \rangle$ is the subgroup generated by *H* and *K*.
 - (b) $[G,H]H \lhd G$.
 - (c) [G,H]H is the smallest normal subgroup of G that contains H.
- 6. Let G be a group. Set $Z_0 = \{e\}$ and recall that Z_{i+1} is the inverse image of $Z(G/Z_i)$ under the canonical surjection $G \longrightarrow G/Z_i$, giving us

$$Z_0 \lhd Z_1 \lhd Z_2 \lhd \cdots.$$

Set $C_0 = G$ and inductively define $C_{i+1} = [C_i, G]$. This gives us

$$C_0 \triangleright C_1 \triangleright C_2 \triangleright \cdots$$

- (a) If $Z_k = G$ for some integer k, show that $C_i \subseteq Z_{k-i}$ for all $1 \le i \le k$.
- (b) If $C_k = \{e\}$ for some integer *k*, show that $C_{k-i} \subseteq Z_i$ for all $1 \le i \le k$.

Hence $Z_k = G$ if and only if $C_k = \{e\}$. In this case, *G* is *nilpotent*; the least *k* is the *nilpotency class* of *G*.

- 7. Let G be a nilpotent group, and let H be the set of elements of finite order.
 - (a) Prove that H is a subgroup of G. Hint: Use induction on the nilpotency class of G.
 - (b) Prove that every finite subset of H generates a finite subgroup.
 - (c) Prove that elements of H of relatively prime order commute.

8. Let *G* be the group of upper triangular matrices $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$ in $GL_2(\mathbb{R})$. Show that *G* is solvable. Is it nilpotent?