Math 6310, Assignment 3

1. Let $n \geqslant 3$. Prove that $x^{3}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ has no solution in S_{n}.
2. How many elements of the group S_{8} commute with the permutation $(12)(34)(56)$?
3. Let $H\left(\mathbb{F}_{p}\right)$ be the Heisenberg group over \mathbb{F}_{p} constructed in class as the semidirect product $(\mathbb{Z} / p \times \mathbb{Z} / p) \rtimes \mathbb{Z} / p$, where the automorphism is given by the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

Prove that if p is odd, then $H\left(\mathbb{F}_{p}\right)$ has exponent p, and that $H\left(\mathbb{F}_{2}\right)$ is isomorphic to D_{4}, and so of exponent 4.
4. Let H be a group, K a finite cyclic group and $\varphi_{1}, \varphi_{2}: K \longrightarrow \operatorname{Aut}(H)$ homomorphism of groups. Prove that if $\varphi_{1}(K)$ and $\varphi_{2}(K)$ are conjugate subgroups of $\operatorname{Aut}(H)$, then there is an isomorphism of groups

$$
H \rtimes_{\varphi_{1}} K \cong H \rtimes_{\varphi_{2}} K
$$

Hint: Suppose $\sigma \varphi_{1}(K) \sigma^{-1}=\varphi_{2}(K)$ for some σ in $\operatorname{Aut}(H)$, then there exists an integer a such that

$$
\sigma \varphi_{1}(k) \sigma^{-1}=\varphi_{2}(k)^{a} \quad \text { for all } k \in K
$$

The map $H \rtimes_{\varphi_{1}} K \longrightarrow H \rtimes_{\varphi_{2}} K$ defined by $(h, k) \longmapsto\left(\sigma(h), k^{a}\right)$ is the desired homomorphism.
5. Let G be a finite group, K a normal subgroup of G, and P a Sylow p-subgroup of K. Prove that $G=K N_{P}$, where N_{P} is the normalizer of P in G.
6. Determine, up to isomorphism, all groups of order 99.
7. Determine, up to isomorphism, all groups of order 63.
8. Let G be a finite group, and $\varphi: G \longrightarrow G$ a homomorphism.
(a) Prove that there exists n such that Image $\varphi^{m}=\operatorname{Image} \varphi^{n}$ and $\operatorname{ker} \varphi^{m}=\operatorname{ker} \varphi^{n}$ for all $m \geqslant n$.
(b) For n as above, prove that G is the semidirect product $\left(\operatorname{ker} \varphi^{n}\right) \rtimes\left(\operatorname{Image} \varphi^{n}\right)$.
9. Let G be a finite group, and p a prime dividing $|G|$ such that the map $x \longmapsto x^{p}$ is a homomorphism.
(a) Prove that G has a unique Sylow p-subgroup P.
(b) Prove that there exists $N \triangleleft G$ such that $N \cap P=\{e\}$ and $G=P N$.
(c) Show that G has a nontrivial center.
10. Let $|G|=p^{k} m$ where p is a prime. Let X be the set of p^{k}-element subsets of G.
(a) Show that $|X| / m \equiv 1 \bmod p$.
(b) Let G act on X by left translation, i.e., $g(S)=g S$ for $S \in X$. Prove that the order of each stabilizer subgroup G_{S} divides p^{k}. (Hint: G_{S} acts on S by left translation.)
(c) Let $Y=\left\{S \in X:\left|G_{S}\right|=p^{k}\right\}$, and show that $|X| \equiv|Y| \bmod p m$.
(d) Prove that $Y=\left\{H x: H\right.$ is a subgroup of G with $|H|=p^{k}$, and $\left.x \in G\right\}$.
(e) Conclude that the number of subgroups of G of order p^{k} is $1 \bmod p$.

This extends the Sylow theorems, since we did not assume m is relatively prime to p.

