Math 6310, Assignment 3

Due in class: 19 October, Monday

- 1. Let $n \ge 3$. Prove that $x^3 = (1 \ 2 \ 3)$ has no solution in S_n .
- 2. How many elements of the group S_8 commute with the permutation (12)(34)(56)?
- 3. Let $H(\mathbb{F}_p)$ be the Heisenberg group over \mathbb{F}_p constructed in class as the semidirect product $(\mathbb{Z}/p \times \mathbb{Z}/p) \rtimes \mathbb{Z}/p$, where the automorphism is given by the matrix

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in \mathrm{GL}_2(\mathbb{F}_p)$$

Prove that if p is odd, then $H(\mathbb{F}_p)$ has exponent p, and that $H(\mathbb{F}_2)$ is isomorphic to D_4 , and so of exponent 4.

4. Let *H* be a group, *K* a finite cyclic group and $\varphi_1, \varphi_2 \colon K \longrightarrow \operatorname{Aut}(H)$ homomorphism of groups. Prove that if $\varphi_1(K)$ and $\varphi_2(K)$ are conjugate subgroups of $\operatorname{Aut}(H)$, then there is an isomorphism of groups

$$H\rtimes_{\varphi_1}K\cong H\rtimes_{\varphi_2}K$$

Hint: Suppose $\sigma \varphi_1(K) \sigma^{-1} = \varphi_2(K)$ for some σ in Aut(*H*), then there exists an integer *a* such that

$$\sigma \varphi_1(k) \sigma^{-1} = \varphi_2(k)^a$$
 for all $k \in K$.

The map $H \rtimes_{\varphi_1} K \longrightarrow H \rtimes_{\varphi_2} K$ defined by $(h,k) \longmapsto (\sigma(h),k^a)$ is the desired homomorphism.

- 5. Let *G* be a finite group, *K* a normal subgroup of *G*, and *P* a Sylow *p*-subgroup of *K*. Prove that $G = KN_P$, where N_P is the normalizer of *P* in *G*.
- 6. Determine, up to isomorphism, all groups of order 99.
- 7. Determine, up to isomorphism, all groups of order 63.
- 8. Let *G* be a finite group, and $\varphi \colon G \longrightarrow G$ a homomorphism.
 - (a) Prove that there exists *n* such that Image $\varphi^m = \text{Image } \varphi^n$ and ker $\varphi^m = \text{ker } \varphi^n$ for all $m \ge n$.
 - (b) For *n* as above, prove that *G* is the semidirect product (ker φ^n) \rtimes (Image φ^n).
- 9. Let G be a finite group, and p a prime dividing |G| such that the map $x \mapsto x^p$ is a homomorphism.
 - (a) Prove that G has a unique Sylow p-subgroup P.
 - (b) Prove that there exists $N \triangleleft G$ such that $N \cap P = \{e\}$ and G = PN.
 - (c) Show that *G* has a nontrivial center.
- 10. Let $|G| = p^k m$ where p is a prime. Let X be the set of p^k -element subsets of G.
 - (a) Show that $|X|/m \equiv 1 \mod p$.
 - (b) Let G act on X by left translation, i.e., g(S) = gS for $S \in X$. Prove that the order of each stabilizer subgroup G_S divides p^k . (Hint: G_S acts on S by left translation.)
 - (c) Let $Y = \{S \in X : |G_S| = p^k\}$, and show that $|X| \equiv |Y| \mod pm$.
 - (d) Prove that $Y = \{Hx : H \text{ is a subgroup of } G \text{ with } |H| = p^k, \text{ and } x \in G\}.$
 - (e) Conclude that the number of subgroups of G of order p^k is $1 \mod p$.

This extends the Sylow theorems, since we did not assume *m* is relatively prime to *p*.