Math 6310, Assignment 1

1. Suppose G is a finite set with an associative law of composition, and $e \in G$ is an element such that $x e=x=e x$ for all $x \in G$. If G has the property that

$$
x z=y z \quad \text { implies } \quad x=y,
$$

prove that G is a group.
2. Let G be a group, and let H be a subgroup of finite index. Prove that the number of right cosets of H equals the number of left cosets.
3. Let a be an element of a group G. Prove that there exists x in G with $x^{2} a x=a^{-1}$ if and only if a is the cube of some element of G.
4. Let G be a finite group. If $x^{2}=e$ for each $x \in G$, prove that $|G|$ is a power of 2 .
5. Find a group with elements a, b such that a and b have finite order, but $a b$ does not have finite order. (Hint: Try looking in $\mathrm{GL}_{2}(\mathbb{Z})$, the group of invertible 2×2 matrices over \mathbb{Z}.)
6. Let n be a positive integer. Consider the set G of positive integers less than or equal to n that are relatively prime to n. The number of elements of G is the Euler phi-function, denoted $\phi(n)$.
(a) Show that G is a group under multiplication modulo n.
(b) If m and n are relatively prime positive integers, show that $m^{\phi(n)} \equiv 1 \bmod n$.
7. Let n be a positive integer. Show that $n=\sum_{d \mid n} \phi(d)$, where the sum is taken over all positive integers d that divide n. (Hint: A cyclic group of order n has a unique subgroup of order d for each d dividing n.)
8. Let G be a finite group with the property that for each integer $d \geq 1$, the equation $x^{d}=e$ has at most d solutions in G. Prove that G is cyclic.
9. Let G be a group such that for a fixed integer $n>1$, we have $(x y)^{n}=x^{n} y^{n}$ for all $x, y \in G$. Let

$$
G^{(n)}=\left\{x^{n} \mid x \in G\right\} \quad \text { and } \quad G_{(n)}=\left\{x \in G \mid x^{n}=e\right\} .
$$

(a) Prove that $G^{(n)}$ and $G_{(n)}$ are normal subgroups of G.
(b) If G is finite, show that the order of $G^{(n)}$ equals the index of $G_{(n)}$.
(c) Show that for all $x, y \in G$, we have $x^{1-n} y^{1-n}=(x y)^{1-n}$. Use this to get $x^{n-1} y^{n}=y^{n} x^{n-1}$.
(d) Conclude that elements of G of the form $x^{n(n-1)}$ generate an abelian subgroup.
10. Let G be a group such that $(x y)^{3}=x^{3} y^{3}$ for all $x, y \in G$, and such that the map $x \mapsto x^{3}$ is bijective. Prove that the group G is abelian.

