Math 6310, Assignment 1

Due in class: Friday, September 4

1. Suppose *G* is a finite set with an associative law of composition, and $e \in G$ is an element such that xe = x = ex for all $x \in G$. If *G* has the property that

$$xz = yz$$
 implies $x = y$,

prove that G is a group.

- 2. Let *G* be a group, and let *H* be a subgroup of finite index. Prove that the number of right cosets of *H* equals the number of left cosets.
- 3. Let *a* be an element of a group *G*. Prove that there exists *x* in *G* with $x^2ax = a^{-1}$ if and only if *a* is the cube of some element of *G*.
- 4. Let *G* be a finite group. If $x^2 = e$ for each $x \in G$, prove that |G| is a power of 2.
- 5. Find a group with elements *a*, *b* such that *a* and *b* have finite order, but *ab* does not have finite order. (Hint: Try looking in $GL_2(\mathbb{Z})$, the group of invertible 2×2 matrices over \mathbb{Z} .)
- 6. Let *n* be a positive integer. Consider the set *G* of positive integers less than or equal to *n* that are relatively prime to *n*. The number of elements of *G* is the *Euler phi-function*, denoted $\phi(n)$.
 - (a) Show that G is a group under multiplication modulo n.
 - (b) If *m* and *n* are relatively prime positive integers, show that $m^{\phi(n)} \equiv 1 \mod n$.
- 7. Let *n* be a positive integer. Show that $n = \sum_{d|n} \phi(d)$, where the sum is taken over all positive integers *d* that divide *n*. (Hint: A cyclic group of order *n* has a unique subgroup of order *d* for each *d* dividing *n*.)
- 8. Let *G* be a finite group with the property that for each integer $d \ge 1$, the equation $x^d = e$ has at most *d* solutions in *G*. Prove that *G* is cyclic.
- 9. Let *G* be a group such that for a fixed integer n > 1, we have $(xy)^n = x^n y^n$ for all $x, y \in G$. Let

$$G^{(n)} = \{x^n \mid x \in G\}$$
 and $G_{(n)} = \{x \in G \mid x^n = e\}.$

- (a) Prove that $G^{(n)}$ and $G_{(n)}$ are normal subgroups of G.
- (b) If G is finite, show that the order of $G^{(n)}$ equals the index of $G_{(n)}$.
- (c) Show that for all $x, y \in G$, we have $x^{1-n}y^{1-n} = (xy)^{1-n}$. Use this to get $x^{n-1}y^n = y^n x^{n-1}$.
- (d) Conclude that elements of *G* of the form $x^{n(n-1)}$ generate an abelian subgroup.
- 10. Let *G* be a group such that $(xy)^3 = x^3y^3$ for all $x, y \in G$, and such that the map $x \mapsto x^3$ is bijective. Prove that the group *G* is abelian.