1. Let M_n be the $n \times n$ matrix with all 2's along “the other diagonal”, and 0's everywhere else. For example,

\[
M_4 = \begin{bmatrix}
0 & 0 & 0 & 2 \\
0 & 0 & 2 & 0 \\
0 & 2 & 0 & 0 \\
2 & 0 & 0 & 0
\end{bmatrix}.
\]

Let $d_n = \det(M_n)$.

(1) Find a formula expressing d_n in terms of d_{n-1} for positive integers $n \geq 2$.

(2) Find d_1, d_2, \ldots, d_8. Do you see a pattern? Find a closed formula for d_n and justify your formula by the mathematical induction.

(3) Find d_{100}.

2. Let $A = \begin{bmatrix}
\vec{v}_1 \\
\vec{v}_2 \\
\vec{v}_3
\end{bmatrix}$ be the 3×3 matrix with rows $\vec{v}_1, \vec{v}_2, \vec{v}_3$.

Suppose $\det(A) = 3$. Find the following.

(1) $\det\left(\begin{bmatrix} -\vec{v}_2 \\
-2\vec{v}_1 \\
\vec{v}_3 \end{bmatrix}\right)$ =

(2) $\det\left(\begin{bmatrix} -\vec{v}_2 \\
-2\vec{v}_3 \\
\vec{v}_1 \end{bmatrix}\right)$ =

(3) $\det\left(\begin{bmatrix} -2\vec{v}_2 + 3\vec{v}_3 \\
-2\vec{v}_1 \\
6\vec{v}_2 - 9\vec{v}_3 \end{bmatrix}\right)$ =

3. Consider the parallelepiped V in \mathbb{R}^3 defined by three vectors

\[
\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}.
\]

in \mathbb{R}^3.

(1) Find the volume of the parallelepiped V.

(2) What is the volume of the image $T(V)$ of V under the linear transformation $T(\vec{x}) = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 2 & 0 \\ 4 & 5 & 6 \end{bmatrix} \vec{x}$.
4. Consider the linear transformation \(T : P_2 \to P_2 \) defined by two cases:

(1) \(T(f(x)) = f(2x - 1) \)
(2) \(T(f(x)) = f'(x) \)

Let \(B = (1, x, x^2) \) be the standard basis of \(P_2 \). Answer the following questions for each of maps above.

(a) Find the \(B \)-matrix \(A \) of \(T \)
(b) Find the determinant of \(T \).
(c) Find all eigenvalues and all eigenvectors of \(T \). Specify the algebraic multiplicity and geometric multiplicity of each eigenvalue.
(d) Determine whether \(P_2 \) has an eigenbasis of \(T \). If \(P_2 \) has an eigenbasis of \(T \), let \(D \) be an eigenbasis and find the \(D \)-matrix \(B \) of \(T \).

\(<\text{True or False questions}\>)

Determine whether the following statement is True or False.

(1) If 0 is an eigenvalue of a matrix \(A \), then \(\det(A) = 0 \).
(2) If \(\vec{v} \) is an eigenvector of \(A \), then \(\vec{v} \) must be an eigenvector of \(A^3 \) as well.
(3) The matrix of any orthogonal projection on a line \(L \) in \(\mathbb{R}^2 \) gives an eigenbasis of \(\mathbb{R}^2 \).
(4) If an invertible matrix \(A \) gives an eigenbasis of \(\mathbb{R}^n \), then \(A^{-1} \) must give an eigenbasis of \(\mathbb{R}^n \) as well.
(5) If \(\vec{v} \) and \(\vec{w} \) are linearly independent eigenvectors of \(A \), then \(\vec{v} + \vec{w} \) is also an eigenvector of \(A \).
(6) \(\det(AB) = \det(A)\det(B) \).
(7) \(\det(A + B) = \det(A) + \det(B) \).
(8) \(\det(AB) = \det(BA) \).
(9) If all the entries of a 7\(\times \)7 matrix \(A \) are 7, then \(\det(A) \) must be \(7^7 \).
(10) If the determinant of an 5\(\times \)5 matrix \(A \) is 5, then its rank must be 5.
(11) If \(A \) is any symmetric matrix, then \(\det(A) = 1 \) or \(-1 \).
(12) If \(A \) is any skew-symmetric 4\(\times \)4 matrix, then \(\det(A) = 0 \).
(13) If \(A \) is any skew-symmetric 5\(\times \)5 matrix, then \(\det(A) = 0 \).
(14) If \(A \) is orthogonal, then \(\det(A) = 1 \) or \(-1 \).
(15) There exists invertible 3\(\times \)3 matrix \(A \) and \(S \) such that \(S^{-1}AS = -A \).
(16) There exists a 3\(\times \)3 matrix \(A \) such that \(A^2 = -I_3 \).
(17) If an \(n \times n \) matrix \(A \) is invertible, then \(\text{adj}(A) \) is invertible as well.
(18) If \(A \) is a 6\(\times \)6 matrix with three distinct eigenvalues \(\lambda_1, \lambda_2, \lambda_3 \) and \(E_{\lambda_1} \) has geometric multiplicity 2 and \(E_{\lambda_2} \) has geometric multiplicity 3. Then \(\mathbb{R}^6 \) has an eigenbasis of \(A \).

Good-luck!