TRUE OR FALSE PROBLEMS IN CHAPTER 7

Determine whether the following statement is True or False.

All matrices are square matrices unless otherwise stated.

1. If 0 is an eigenvalue of a matrix A, then $\det(A) = 0$.

2. If \vec{v} is an eigenvector of A, then \vec{v} must be an eigenvector of A^3 as well.

3. The matrix of any orthogonal projection on a line L in \mathbb{R}^2 is diagonalizable.

4. If an invertible matrix A is diagonalizable, then A^{-1} must be diagonalizable as well.

5. If \vec{v} and \vec{w} are linearly independent eigenvectors of A, then $\vec{v} + \vec{w}$ is also an eigenvector of A.

6. There exits a 4×4 diagonalizable nonzero matrix A such that $A^4 = O_4$.

7. If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ is an eigenbasis for both A and B, then $AB = BA$.

Date: April 7, 2005.