1. Fundamental Theorem For Line Integrals
Let \(C \) be a piecewise smooth curve given parametrically by \(\mathbf{r} = \mathbf{r}(t), \ a \leq t \leq b \), which begins at \(\mathbf{a} = b\mathbf{r}(a) \) and ends at \(\mathbf{b} = \mathbf{r}(b) \). If \(f \) is continuously differentiable on an open set containing \(C \), then
\[
\int_C \nabla f(\mathbf{r}) \cdot d\mathbf{r} = f(\mathbf{b}) - f(\mathbf{a})
\]

2. Green’s Theorem
Let \(C \) be a smooth, simple closed curve that forms the boundary of a region \(S \) in the \(xy \)-plane. If \(M(x, y) \) and \(N(x, y) \) are continuous and have continuous partial derivatives on \(S \) and its boundary \(C \), then
\[
\iint_S \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) = \oint_C Mdx + Ndy
\]

3. Gauss’s Theorem
Let \(\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k} \) be a vector field such that \(M, N, P \) have continuous first-order partial derivatives on a solid \(S \) with boundary \(\partial S \). If \(\mathbf{n} \) denotes the outer unit normal to \(\partial S \), then
\[
\iint_{\partial S} \mathbf{F} \cdot \mathbf{n}dS = \iiint_S \text{div} \mathbf{F}dV
\]
In other words, the flux of \(\mathbf{F} \) across the boundary of a closed region in three space is the triple integral of its divergence over that region.

4. Stokes’s Theorem
Let \(S, \partial S, \) and \(\mathbf{n} \) be as indicated in the textbook, and suppose that \(\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k} \) is a vector field, with \(M, N, P \) having continuous first-order partial derivatives on \(S \) and its boundary \(\partial S \). If \(\mathbf{T} \) denotes the unit tangent vector to \(\partial S \), then
\[
\oint_{\partial S} \mathbf{F} \cdot d\mathbf{T} = \iint_S (\text{curl} \mathbf{F}) \cdot \mathbf{n}dS
\]